CS 464 Practice Exam

Problem 1 (15 pts): Which of the following scenes would cause problems for the Painter's Algorithm?

(These drawings are in image space; each rectangle is a single primitive.)

Problem 2: Transformations (15 pts)
Consider the following classes of elementary 3D transformations:

- $\operatorname{scale}(S x, S y, S z)$
- rotate-x (θ) - rotate about X axis counterclockwise by θ
- rotate-y (θ)
- rotate-z (θ)
- translate ($t x, t y, t z)$

Each of the following sequences of transformations happens to reduce to a single transformation from one of these classes. Find the equivalent elementary transformation for each sequence.
1.scale $(2,1,1)$, then scale $(1,3,4)$

2 .scale $(2,1,1)$, then rotate- $y\left(90^{\circ}\right)$, then scale $(3,1,1)$, then rotate- $y\left(-90^{\circ}\right)$
3.rotate- $x\left(90^{\circ}\right)$, then rotate $-y\left(90^{\circ}\right)$, then rotate- $z\left(90^{\circ}\right)$
4.rotate-z $\left(90^{\circ}\right)$, then translate $(1,0,0)$, then rotate- $z\left(-90^{\circ}\right)$

Problem 3: Transformations (15 pts)

The matrices

$$
\left[\begin{array}{cccc}
1 & -1 & 0 & 0 \\
1 & 1 & 0 & 0 \\
0 & 0 & \sqrt{2} & 0 \\
0 & 0 & 0 & \sqrt{2}
\end{array}\right], \quad\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 2 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \text {, and }\left[\begin{array}{cccc}
-1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

are a rotation by $+45^{\circ}$ about an axis through the origin in the direction $(0,0,1)$, a nonuniform scale by 2 about the origin along the direction $(0,1,0)$, and a reflection across the plane $x=0$, respectively. Using the same forms of description, describe what the following products of matrices do:

$$
\begin{aligned}
& \text { 1. }\left[\begin{array}{cccc}
1 & 0 & 0 & -1 \\
0 & 1 & 0 & -2 \\
0 & 0 & 1 & -3 \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{cccc}
1 & 0 & -\sqrt{3} & 0 \\
0 & 2 & 0 & 0 \\
\sqrt{3} & 0 & 1 & 0 \\
0 & 0 & 0 & 2
\end{array}\right]\left[\begin{array}{llll}
1 & 0 & 0 & 1 \\
0 & 1 & 0 & 2 \\
0 & 0 & 1 & 3 \\
0 & 0 & 0 & 1
\end{array}\right] \\
& \text { 2. }\left[\begin{array}{cccc}
1 & -1 & 0 & 0 \\
1 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{cccc}
2 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 2 & 0 \\
0 & 0 & 0 & 2
\end{array}\right]\left[\begin{array}{cccc}
1 & 1 & 0 & 0 \\
-1 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
\end{aligned}
$$

Hint: That last one is a little tricky.

Problem 4: Triangle Meshes (10 pts)
Consider the indexed triangle set defined by

- vertex list $[(-1,-1,-1)(-1,-1,1)(1,-1,1)(1,-1,-1)(0,1,0)]$
- and the Triangle indices $[021,023,024,401,412,423,430]$.

1. Draw the shape described?
2. How could you do this as a triangle strip - just a single series of vertices in the indices list.

Problem 5: Triangle meshes (10 points)
The following indexed triangle set has a problem with it. What is the problem, and how can you tell? Remember: The order of triangles must be consistent in terms of Clockwise or counterclockwise.

vertices			triangles	
0	$(0,0,0)$		0	$(0,2,1)$
1	$(1,0,0)$		1	$(1,2,3)$
2	$(0,1,0)$		2	$(0,3,2)$
3	$(0,0,1)$		3	$(1,0,3)$

Problem 6: Matrix classification (10 points)

Classify each of the following 2D homogeneous matrices as follows: (a) rotation, (b) mirror reflection, (c) uniform scale, (d) nonuniform scale, (e) translation, (f) shear, or (g) combination.

Earlier categories take precedence over later categories if more than one applies. There is not a one-to-one mapping between the matrices and the categories.

1. $\left[\begin{array}{ccc}1 & -1 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$
2. $\left[\begin{array}{lll}1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$
3. $\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1\end{array}\right]$
4. $\left[\begin{array}{ccc}0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1\end{array}\right]$
5. $\left[\begin{array}{ccc}-1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1\end{array}\right]$
6. $\left[\begin{array}{lll}2 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$
7. $\left[\begin{array}{ccc}1 & -1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$

Problem 7: Shading (10 pts)
Given a triangle mesh, briefly explain the key differences in how triangle normals are used to evaluate (i)
flat shading, (ii) Gouraud shading, and (iii) Phong shading.

