
CS464 Oct 3rd 2017

Assignment 3 – Due 10/6/2017
Due 10/8/2017

Implementation Outline

Assignment 3 Skeleton

A good sequence to implement the program
1. Start with a flat terrain sitting at Y=0 and Cam at Y=0.5
2. Add in code to compute a View Matrix
3. Add in Mouse Code to handle looking around.
4. Add in Mouse Code to let you drive around.
5. Adjust the terrain to vary Y but keep values between 0

and 0.3 – so no big leaps.
6. Add code to extract Height from Texture object
7. Adjust Cam height with height from texture object.
8. Adjust Cam view angle to vary with terrain.
9. Adjust Cam up angle to vary with terrain.

Could we use Vertex Shader
Ideas for how we might use the vertex shader?

Viewing

COMPSCI 464

Image Credits: Encarta and http://www.sackville.ednet.ns.ca/art/grade10/drawing/perspective4.html

Graphics Pipeline
• Graphics hardware employs a sequence of

coordinate systems
– The location of the geometry is expressed in each

coordinate system in turn, and modified along the
way

– The movement of geometry through these spaces
is considered a pipeline

Local
Coordinate

Space

World
Coordinate

Space
View Space

Canonical
View

Volume

Window/
Screen
Space

Standard Sequence of Transforms

Image credits: http://www.cs.cornell.edu/courses/cs4620/2009fa/lectures/10viewing.pdf

Canonical View Volume
} CanonicalView Space:A cube,with the origin at the center,

the viewer looking down –z,x to the right,and y up
} CanonicalViewVolume is the cube:[-1,1]×[-1,1]×[-1,1]
} Variants (later) with viewer looking down +z and z from 0-1
} Only things that end up inside the canonical volume can appear in the

window

Canonical View Volume
} Tasks: Parallel sides and unit dimensions make many

operations easier
} Clipping – decide what is in the window
} Rasterization - decide which pixels are covered
} Hidden surface removal - decide what is in front
} Shading - decide what color things are

Window/Screen Space
} Window Space:Origin in one corner of the“window” on

the screen, x and y match screen x andy

} Windows appear somewhere on the screen
} Typically you want the thing you are drawing to appear in your window
} But you may have no control over where the window appears

} You want to be able to work in a standard coordinate system
– your code should not depend on where the window is

} You target Window Space,and the windowing system takes
care of putting it on the screen

Canonical ® Window Transform
} Problem:Transform the CanonicalViewVolume into

Window Space (real screen coordinates)
} Drop the depth coordinate and translate
} The graphics hardware and windowing system typically take

care of this – but we’ll do the math to get you warmed up

} The windowing system adds one final transformation
to get your window on the screen in the right place
} glutInitWindowPosition(50,50);

Canonical ® Window Transform
} Typically,windows are specified by a corner,width and

height
} Corner expressed in terms of screen location
} This representation can be converted to (xmin,ymin) and

(xmax,ymax)
} We want to map points in CanonicalView Space into

the window
} Canonical View Space goes from (-1,-1,-1) to(1,1,1)
} Lets say we want to leave z unchanged

} What basic transformations will be involved in the
total transformation from 3D screen to window
coordinates?

(1,1)

(xmin,ymin)

(xmax,ymax)

(-1,-1)

Canonical View Space Window Space

Canonical ® Window Transform

(1,1)

(xmin,ymin)

(-1,-1)

(xmax,ymax)

ú

ú

û
úê

úê

ûë

ê
ê ú ê

ê

ë û ë 1
0
1

0
0
0

0

1

minmaxminmax canonicalúpixel ú = ê
úêzcanonicalú

0
(y - y)2 0 (y + y)2úê y

0 1
0 0

(xmax + xmin) 2ùéxcanonicalù

êzpixel ú

êy ú ê
éxpixel ù é(xmax - xmin) 2

Canonical ® Window Transform

Canonical ® Window Transform
} You almost never have to worry about the canonical to

window transform

} In WebGL, you tell it which part of your window to draw in
– relative to the window’s coordinates
} That is, you tell it where to put the canonical view volume
} You must do this whenever the window changes size
} Window (not the screen) has origin at bottom left
} gl.viewport(minx, miny, maxx, maxy)
} Typically: gl.viewport(0, 0, width, height)fills the entire

window with the image
} Why might you not fill the entire window?

Orthographic View Space
} View Space: a coordinate system with the viewer looking in

the –z direction, with x horizontal to the right and yup
} A right-handed coordinate system!

} The view volume is a rectilinear box for orthographic projection
} The view volume has:

} a near plane at z=n
} a far plane at z=f , (f <n)
} a left plane at x=l
} a right plane at x=r,(r>l)
} a top plane at y=t
} and a bottom plane at y=b,(b<t)

z
x

(r,b,n)

y (l,t,f)

Rendering the Volume
} To find out where points end up on the screen, we must

transformView Space into CanonicalView Space
} We know how to draw Canonical View Space on thescreen

} This transformation is“projection”
} The mapping looks similar to the one for Canonical to

Window …

Orthographic Projection

} Orthographic projection projects all the
points in the world along parallel lines
onto the image plane
} Projection lines are perpendicular to the

image plane
} Like a camera with infinite focal length

} The result is that parallel lines in the
world project to parallel lines in the image,
and ratios of lengths are preserved
} This is important in some applications, like

medical imaging and some computer aided
design tasks

e

image plane

y

(0,0) x

g

Subtle point: it doesn’t
precisely matter where we
put the image plane

t,n

t,f

b,n

b,f

General Orthographic

xcanonical =Mview->canonicalxview

viewú
ú

úê

ûë û
ê
ê

ê

ë

- (n + f) (n - f)úê zview ú
- (t+ b) (t-b) úê y
- (r+ l) (r- l) ùéxview ù

= ê

viewú
ú

úê

ûë ûûë

ê
ú ê

canonicalú = ê

û ë
ê
êzcanonicalú
ê
êy ú ê

ë

éxcanonicalù

úê 1 ú1

é2 (r - l)

úê 1 ú1
- (n + f)2úê zview ú
- (t+ b) 2 úê y

0 0 - (r+ l) 2 ùéxview ù
1 0
0 1
0 01úê0

úê
0úê0
0úê0
0ùé10 0

0 2 (t -b) 0
0 0 2 (n - f)
0 0 0

0 0
0 2 (t -b) 0
0 0 2 (n - f)
0 0 0

é2 (r - l)

1

Orthographic Projection Matrix
(Orthographic View to Canonical Matrix)

View Volumes
} Only stuff inside the CanonicalViewVolume gets drawn

} The window is of finite size, and we can only store a finite number of
pixels

} We can only store a discrete, finite range of depths
} Like color, only have a fixed number of bits at each pixel

} Points too close or too far away will not be drawn
} But, it is inconvenient to model the world as a unit box

} A view volume is the region of space we wish to transform
into the CanonicalViewVolume for drawing
} Only stuff inside the view volume gets drawn
} Describing the view volume is a major part of defining the view

} Pinhole cameras work in
practice

Perspective Projection
} Abstract camera model -

box with a small hole in it

Distant Objects Are Smaller

Basic Perspective Projection
} We are going to temporarily ignore canonical view

space, and go straight from view towindow
} Assume you have transformed to view space, withx

to the right,y up,and z back toward the viewer
} Assume the origin of view space is at the center of

projection (the eye)
} Define a focal distance,d,and put the image plane

there (note d is negative)
} You can define d to control the size of the image

• If you know P(xv ,yv ,zv) and d, what is P(xs,ys)?
– Where does a point in view space end up on the

screen?

xv

yv

-zv
d

P(xv ,yv ,zv)P(xs,ys)

Basic Perspective Projection

} Similar triangles gives:

d zv d zv

xs = xv ys = yv

yv

-zv

P(xv,yv,zv)P(xs,ys)

View Plane
d

Basic Case

• Using homogeneous coordinates we can
write:
– Our next big advantage to homogeneous

coordinates

êë

ê

d úû
êëd úû êz ú

v

ù
ê ú

êy ú º ê
y ú

ê zv ú
v

é xv

sú

éxs ù

vs

d

úP

úûêë

P = ê

1
0ú
0ú

ê0
ê0

é1 0 0 0ù
ê0 1 0 0ú

0 1
0

Simple Perspective Transformation

• The basic equations we have seen give a flavor of what
happens, but they are insufficient for all applications

• They do not get us to a CanonicalViewVolume
• They make assumptions about the viewing conditions
• To get to a Canonical Volume, we need a Perspective

Volume …

General Perspective

Perspective View Volume
} Recall the orthographic view volume,defined by a near,far,left,

right, top and bottomplane

} The perspective view volume is also defined by near, far,left,
right, top and bottom planes – the clip planes
} Near and far planes are parallel to the image plane: zv=n, zv=f
} Other planes all pass through the center of projection (the origin of

view space)
} The left and right planes intersect the image plane in vertical lines
} The top and bottom planes intersect in horizontal lines

Clipping Planes

xv

-zv

Near Clip
Plane

Far Clip
PlaneView

Volume

Left Clip
Plane

Right Clip
Plane

f
n

l

r

} Assumes a symmetric view volume

Field of View

xv

-zv

Near Clip
Plane

Far Clip
PlaneView

Volume

Left Clip
Plane

Right Clip
Plane

f
FOV

Perspective Parameters
} We have seen several different ways to describe a

perspective camera
} Focal distance,Field ofView,Clipping planes

} The most general is clipping planes – they directly
describe the region of space you are viewing

} For most graphics applications,field of view is the
most convenient
} It is image size invariant – having specified the field of view,

what you see does not depend on the image size

} You can convert one thing to another

• You must have the image size to do this conversion
– Why? Same d, different image size,different FOV

d
d

FOV/2

height/2

÷
ø
ö

ç
è
æ

÷ =
è ø

heightæ FOV ö

2d
FOV = 2 tan

2d
height

2
tanç

-1

Focal Distance to FOV

WebGL
} mat4.perspective(…)

} Field of view in the y direction,FOV,(vertical field-of-view)
} Aspect ratio, a, should match window aspect ratio
} Near and far clipping planes, n and f
} Defines a symmetric view volume

}

• We want a matrix that will take points in our
perspective view volume and transform them into
the orthographic view volume
– This matrix will go in our pipeline before an orthographic

projection matrix

(l,b,n)
(r,t,n) (l,b,n)

(r,t,n) (r,t,f)(r,t,f)

Perspective Projection Matrices

Mapping Lines
} We want to map all the lines through

the center of projection to parallel
lines
} This converts the perspective case to the

orthographic case, we can use all our
existing methods

} The relative intersection points of
lines with the near clip plane should
not change

} The matrix that does this looks like
the matrix for our simple perspective
case

• This matrix leaves points with z=n unchanged
• It is just like the simple projection matrix, but it does

some extra things to z to map the depth properly
• We can multiply a homogenous matrix by any number

without changing the final point, so the two matrices
above have the same effect

û

ú º ê

ë û ë 0 ú
ê0
ê0

0 úê0
0 ù

ê0
ê0

0 ú
ú

- nf ú

0 ù én 0 0
n 0
0 n + f
0 1

é1 0 0
ê0 1 0

0 (n + f) n - f ú
0 1 n 0 ú

MP = ê

General Perspective

• After applying the perspective matrix, we map the
orthographic view volume to the canonical view volume:

ú
úû

ê

ê
ê
ê
ê
êë

0 ù
ú

1

0

0

0

0

0

0é 2
0 0
n 0 0úê0 0 (n + f) - nf

ú

ú
0 1 0 ú

û(n - f) úë0

0

2 - (n + f)úê
(n - f)

0

(t - b)
úê0

- (t+ b) úê
0

2
(t -b)

(r - l)úén
- (r+ l)ù

ê(r - l)

O Pview->canonical

ê
=M M =M

Mworld->canonical =Mview->canonicalMworld->view

xcanonical =Mworld->canonicalxworld

Complete Perspective Projection

END

