CS 464 Review

Review of Computer Graphics for Final Exam

Goal: Draw 3D Scenes on Display Device

3D Scene — Abstract Model Framebuffer — Matrix of Screen Pixels
A
far
clip
plane _~._ /pixel(x,.v)
------ A _ pZ
Y
viewing T Tl
frustum near T x ’

clip plane viewpoint

In Computer Graphics: If it looks right then it is right

Components of 3D Scene Model

Components Common Attributes
* Coordinate System * Coordinates = x,y,z — Cartesian

* Geometry = Models of Objects * Colors =r, g,b = Red, Green, Blue
* Lights

* Camera

* Textures

* Materials

* transforms

Framebuffer — device for showing pictures.

Framebuffer — Matrix of Screen Pixels
Core Features of Framebuffer

e Matrix of Pixels

* Pixels: 8 bits of Red,Green,Blue,
Alpha for 32 bits per pixel.

pixeliy) Fixed width
/ * Fixed height

* Coordinates go left right, top to
L1 bottom.

 clearBuffer(acolor);
* setPixel(x,y, acolor);

2

What are our challenges?

* How do we draw simple 2D primitives?
* Lines (x,y)
* Triangles (x,y)

* How do we draw simple 3D primitives?
 Lines (x,y,z)
* Triangles (x,y,z)

What are our challenges?

* How do we draw simple 2D primitives?
 Lines (x,y) — rasterize between two points.
* Triangles (x,y) — clip the triangle, then rasterize.

* How do we draw simple 3D primitives?
* Lines (x,y,z) — Project from 3D to 2D then use 2D methods.
* Triangles (x,y,z) — Project from 3D to 2D then use 2D methods.
* Projection: - Perspective Projection and Orthographic Projection

Simple 2D Scene: Lines

Scene Definition
A simple list of vertices

L1 L={
/ xb1,yb1,xel,yel,

xb2,yb2,xe2,ye2,

/ L3 xb6,yb6,xe6,yeb
L2)

L7

L4 L6

L5

Coordinate Space= Framebuffer

Coordinate Spaces

Framebuffer — Matrix of Screen Pixels

0,0 319,0
o
pixel(x,y)
/
<
Y
0.239 319,239
’ x ’

Normalized Device Coordinates

A Y-ax1s
10 4
11 I
P(3,5)
51
T-aTLS
————— = —t—————t———
~10 -5 5 10
L (0,0)
-5 4+ .
orgin
111 | IV
—10 +
Coordinate Transform: F,=W,, F =W -F

What are our Challenges?

* Normalized Device Coordinates are very limited

* How do | move objects?

* How do | map objects to different coordinates?

* How can | look at a scene from any view position | would like?

What are our Challenges?

* Normalized Device Coordinates are very limited
* How do | move objects? — Matrix Transform
* How do | map objects to different coordinates? Matrix Transform

* How can | look at a scene from any view position | would like?
* View Transformation

N

\ ‘RIS, R R T,
‘RIS, R T,
R RIS, R T,
R RIS, T,
R R RS, T,
| P Py G|
Pe P, P, G

\ g

3D to 2d: Perspective
Projection

Provides foreshortening.
Has much higher visual realism.

What users expect.
Very simple perspective projection.

X =x/z
Y =vy/z

oSO = O

_—O O O

o O O O

— B N 4

View Tranformation
Yc

z. Camera Space (Xc,Yc,2c)

World Space (x,y,z) UP (ux, uy, uz)

y EYE (ex,ey,ez)
AT (ax,ay,az)
X
Camera is defined via view parameters EYE, AT and UP,
measured in world space. It is located at EYE, pointing at
7 AT, with upward-orientation of roughly UP.

In the Camera space, camera is located at origin, pointing at
-zZ¢, with upward-orientation of ye.
Zcis opposite of AT, yc is roughly UP.

Standard Sequence of Transforms

object space

modeling
transformation

world space

A

camera space

B

camera
transformation

o\

projection

screen space

M

viewport

transformation trgnsformation

canonical
view volume

} Image credits: http://www.cs.cornell.edu/courses/cs4620/2009fa/lectures/10viewing.pdf

Now Where are We?

3D Scene — Abstract Model

far
clip
plane

RN
-~
.
S
.

viewing
frustum near
clip plane viewpoint

.
.
.~
.o
-
e

Framebuffer — Matrix of Screen Pixels

L/

In Computer Graphics: If it looks right then it is right

pixel(x,y)

What are our Challenges?

* How do we represent complex Geometry?
* How do we integrate Lighting?

* How do we select colors for the Geometry we want to draw?

* How do we handle overlapping Triangles?

What are our Challenges?

* How do we represent complex Geometry?
* Modeling = easiest method is to use Triangles.

* How do we integrate Lighting?
 Lighting Models = ambient, diffuse, specular(phong)

* How do we select colors for the Geometry we want to draw?
* Shading Models = flat, gouraud, phong
* Texture Mapping = select a color from an image.
* Materials = define colors of the triangles and assign directly.

* How do we handle overlapping Triangles?

* Painters algorithm
 Z-Buffer - the standard.

How do we implement solutions?

* How do we represent complex Geometry?
* Triangles = vertices, normals, faces indices, use Program to create large models.

* How do we integrate Lighting?
* Typically = we generate a light color for each vertex and save it for rasterization.

* How do we select colors for the Geometry we want to draw?

e Rasterization = when rasterizing, we pick the color from:
* Light value — interpolate.
* Texture Map = interpolate texture coordinates.
* Materials = use a triangle specific color and interpolate its value with the lighting.

* How do we handle overlapping Triangles?
* Painters algorithm —sort all triangles before rendering and draw back to front.
» Z-Buffer = For each screen pixel keep a Z value and overwrite the closer pixels.

So what can we do now?

3D Scene — Abstract Model Framebuffer — Matrix of Screen Pixels
A
far
clip
plane .. /pixel(x,.V)
...... Y h _ pZ
Y
viewing T Tl
frustum near s x ’

clip plane Vviewpoint

In Computer Graphics: If it looks right then it is right

So how do we implement this so it is FAST!

So how do we implement this so it is FAST!

* We Introduce the Graphics Pipeline

 gl.drawElements(gl.TRIANGLES, cubeVertexindexBuffer.numltems,
gl.UNSIGNED SHORT, 0);

Graphics Pipeline: process to draw scene.

General Pipeline

Application — Geometry — Rasterization —|| Screen

Geometry Pipeline

Model- & Camera- Window-

: Lightingg —= Projection Clipping — Viewp ort-
SR T T transformationT

Objekt coordinatesCamera coordinates Clipping-Coordinates Device coordinats

What are our Challenges?

* How do we represent complex Geometry?
* Modeling = easiest method is to use Triangles.

* How do we integrate Lighting?
 Lighting Models = ambient, diffuse, specular(phong)

* How do we select colors for the Geometry we want to draw?
* Shading Models = flat, gouraud, phong
* Texture Mapping = select a color from an image.
* Materials = define colors of the triangles and assign directly.

* How do we handle overlapping Triangles?

* Painters algorithm
 Z-Buffer - the standard.

How do we represent Geometry?

* Modeling
* Collections of triangles defined by: Vertices, Edges, Faces, Normals
* Aset of vertices, a set of triangle indices = bare minimum geometry.

* Normals are present for what purposes?

 How to create complex models?
* Create by hand
* Use a program = Maya or Blender
* Scan the real world = Lidar Scanner and post-process.
* Collections of photographs = photogrammetry.

* Complex Geometry = eventually all translated to triangles.

* NURBS

* Parametric Surfaces

* Subdivision Surfaces

* Implicit Surfaces

e Constructive Solid Geometry

SCE:Scene % [Ve:d426748 | Fa:419169 | Ob:134-1 | La:3 | Mem:38.19M (5.87M) | Time:04:31 50

(250} Cylincer 023

{250) Cylinder 023

¥ View Select Obhject

: : : Material . Shaders
Link to Object Ref 0928 M |
[= [malightring

VCoI Light VCoI Paint
ME:Cylinder.106 | 0B =] « 1 Mat1] — Nowst | Shadow
Spec 1.395 M — | RIEEEEE

Bis |

Render Pipeline R 0.817 I

[taio | ZTransp 4 Zefs.00000 S05
T wire [Strands | Zinvert | Bl A s I Tralu0.00 | |SBias000 |
[l Traceable Shadbuf RGE 4 1.000 — Amb 0.500 M |Emitoi2s W

Constructive Solid Geometry (CSG)

* Represent solid object as hierarchy of boolean operations
* Union

* Intersection L
* Difference ! /
/J\

How Do We Select Colors for Pixels?

. fAssign Simple Materials = simply store an r,g,b color with each object or
ace.

* Shading Models = controls how colors are ‘modified’
* Flat Shading
* Gouraud Shading
* Phong Shading

* Texture/Image Maps
* Assign s,t texture coordinates to Vertices and interpolate.
 What are types of things we can use Image maps for?

* Procedural Textures
* Pixel = f(s,t) where f is a function = | = cos(theta)*sin(phi)

* Programmable Fragment Shaders
e Use programmable code to calculate pixel color = most powerful.

How do we introduce Lighting?

* Lighting Components
 Ambient = a general representation for the common light in the room.
 Diffuse = the light that reflects in all direction from a surface.
* Specular = the light that reflects differently based on the viewing angle.

* Lighting Models
 Ambient Lighting Model = la = Ka*la
* Diffuse Lighting Model = Id = Kd * Id*Dot(ldir, Normal)
* Phong Lighting Model = Is = Ks * Dot(2*(Dot(ldir,N)N —Idir),Idir)*alpha*Is

How Deal With Overlapping 3D Triangles

* Painters Algorithm
* What is an example of this failing?

 Z Buffer Algorithm
* What is an example of this failing?

Color Spaces

* RGB = Red, Green, Blue

* CMYK = Cyan, Magenta, Yellow, Black

* HSV = Hue, Saturation, Value

* HSI = Hue Saturation, Intensity

* LAB = Luminance, A=green-red, B = blue-yellow

Simple Linear Interplation

* Linear interpolation = c=a+t*b:tis a parameter from 0to 1.0
* Bilinear Interpolation

* Trilinear Interpolation

Simple Vector Arithmetic

* Vector addition = simply addition of all vector terms.
* Vector multiplication = Cross product

* Vector Normalization

* Angle between two products = Dot Product

What are Affine Transformations?

e What do Affine Transforms Preserve?

What are Affine Transformations?

* What do Affine Transforms Preserve?
* Points, straight lines, parallel lines, planes.
* |s the Perspective Projection an Affine transform?

* Examples of Affine transforms:
* Translation
* Scaling
* Rotations
e Shears
e Our typical Matrix transformations.

So What Can We Do Now?

o V7770777

* You Tell Me

What Can’t We Do Yet?

* Shadows

* Reflections

* Anti-aliasing

* Scene Graphs

* Binary Space Partitioning

* Advanced Lighting = Diffuse/Diffuse interaction
* Stereo Systems

* Ray tracing and volume tracing.

What Can’t We Do Yet?

e Shadows --> Draw the Scene Twice.
» Reflections = Draw the Scene once for every reflective surface.
* Anti-aliasing = Over-render the scene and scale down.
* Scene Graphs = Organize complex Scenes with Trees.
* Binary Space Partitioning = Rapid advanced modeling.
* Advanced Lighting = Diffuse/Diffuse interaction

* Stereo Systems = Use Two Cameras.

* Ray tracing and volume tracing.

The End

* Work on your final projects
e Study for Exam
* Practice Exam Available on Thursday

