
CS	464	Review
Review	of	Computer	Graphics	for	Final	Exam



Goal:	Draw	3D	Scenes	on	Display	Device

In	Computer	Graphics:		If	it	looks	right	then	it	is	right

3D	Scene	– Abstract	Model Framebuffer	– Matrix	of	Screen	Pixels



Components	of	3D	Scene	Model

Components
• Coordinate	System
• Geometry	=	Models	of	Objects
• Lights
• Camera
• Textures
• Materials
• transforms

Common	Attributes
• Coordinates	=	x,y,z – Cartesian
• Colors	=	r,	g,b =	Red,	Green,	Blue



Framebuffer	– device	for	showing	pictures.

Core	Features	of	Framebuffer
• Matrix	of	Pixels
• Pixels:	8	bits	of	Red,Green,Blue,	
Alpha	for	32	bits	per	pixel.
• Fixed	width
• Fixed	height
• Coordinates	go	left	right,	top	to	
bottom.
• clearBuffer(acolor);
• setPixel(x,y,	acolor);

Framebuffer	– Matrix	of	Screen	Pixels



What	are	our	challenges?

• How	do	we	draw	simple	2D	primitives?
• Lines	(x,y)
• Triangles	(x,y)

• How	do	we	draw	simple	3D	primitives?
• Lines	(x,y,z)
• Triangles	(x,y,z)



What	are	our	challenges?

• How	do	we	draw	simple	2D	primitives?
• Lines	(x,y)	– rasterize	between	two	points.
• Triangles	(x,y)	– clip	the	triangle,	then	rasterize.

• How	do	we	draw	simple	3D	primitives?
• Lines	(x,y,z)	– Project	from	3D	to	2D	then	use	2D	methods.
• Triangles	(x,y,z)	– Project	from	3D	to	2D	then	use	2D	methods.
• Projection:	- Perspective	Projection	and	Orthographic	Projection



Simple	2D	Scene:	Lines
Scene	Definition
A	simple	list	of	vertices

L={
xb1,yb1,xe1,ye1,
xb2,yb2,xe2,ye2,
….
xb6,yb6,xe6,ye6

}

L1

L2
L3

L4 L6

L7

L5

Coordinate	Space=	Framebuffer



Coordinate	Spaces

Framebuffer	– Matrix	of	Screen	Pixels

Normalized	Device	Coordinates

0,0 319,0

0,239 319,239

Coordinate	Transform:	Fx=Wx,	Fy=Wy-Fymax



What	are	our	Challenges?

• Normalized	Device	Coordinates	are	very	limited
• How	do	I	move	objects?
• How	do	I	map	objects	to	different	coordinates?
• How	can	I	look	at	a	scene	from	any	view	position	I	would	like?



What	are	our	Challenges?

• Normalized	Device	Coordinates	are	very	limited
• How	do	I	move	objects?	– Matrix	Transform	
• How	do	I	map	objects	to	different	coordinates?	Matrix	Transform
• How	can	I	look	at	a	scene	from	any	view	position	I	would	like?
• View	Transformation



3D	to	2d:	Perspective	
Projection
Provides	foreshortening.

Has	much	higher	visual	realism.

What	users	expect.

Very	simple	perspective	projection.

X’	=	x/z

Y’	=	y/z



View	Tranformation



Standard Sequence of Transforms

Image credits: http://www.cs.cornell.edu/courses/cs4620/2009fa/lectures/10viewing.pdf



Now	Where	are	We?

In	Computer	Graphics:		If	it	looks	right	then	it	is	right

3D	Scene	– Abstract	Model Framebuffer	– Matrix	of	Screen	Pixels



What	are	our	Challenges?

• How	do	we	represent	complex	Geometry?

• How	do	we	integrate	Lighting?

• How	do	we	select	colors	for	the	Geometry	we	want	to	draw?

• How	do	we	handle	overlapping	Triangles?



What	are	our	Challenges?

• How	do	we	represent	complex	Geometry?
• Modeling	=	easiest	method	is	to	use	Triangles.

• How	do	we	integrate	Lighting?
• Lighting	Models	=	ambient,	diffuse,	specular(phong)

• How	do	we	select	colors	for	the	Geometry	we	want	to	draw?
• Shading	Models	=	flat,	gouraud,	phong
• Texture	Mapping	=	select	a	color	from	an	image.
• Materials	=	define	colors	of	the	triangles	and	assign	directly.

• How	do	we	handle	overlapping	Triangles?
• Painters	algorithm
• Z-Buffer	à the	standard.



How	do	we	implement	solutions?

• How	do	we	represent	complex	Geometry?
• Triangles	=	vertices,	normals,	faces	indices,	use	Program	to	create	large	models.

• How	do	we	integrate	Lighting?
• Typically	=	we	generate	a	light	color	for	each	vertex	and	save	it	for	rasterization.

• How	do	we	select	colors	for	the	Geometry	we	want	to	draw?
• Rasterization	=	when	rasterizing,	we	pick	the	color	from:

• Light	value	– interpolate.
• Texture	Map	=	interpolate	texture	coordinates.
• Materials	=	use	a	triangle	specific	color	and	interpolate	its	value	with	the	lighting.

• How	do	we	handle	overlapping	Triangles?
• Painters	algorithm	– sort	all	triangles	before	rendering	and	draw	back	to	front.
• Z-Buffer	à For	each	screen	pixel	keep	a	Z	value	and	overwrite	the	closer	pixels.



So	what	can	we	do	now?

In	Computer	Graphics:		If	it	looks	right	then	it	is	right

3D	Scene	– Abstract	Model Framebuffer	– Matrix	of	Screen	Pixels



So	how	do	we	implement	this	so	it	is	FAST!



So	how	do	we	implement	this	so	it	is	FAST!

• We	Introduce	the	Graphics	Pipeline
• gl.drawElements(gl.TRIANGLES,	cubeVertexIndexBuffer.numItems,	
gl.UNSIGNED_SHORT,	0);



Graphics	Pipeline:	process	to	draw	scene.
General	Pipeline

Geometry	Pipeline



What	are	our	Challenges?

• How	do	we	represent	complex	Geometry?
• Modeling	=	easiest	method	is	to	use	Triangles.

• How	do	we	integrate	Lighting?
• Lighting	Models	=	ambient,	diffuse,	specular(phong)

• How	do	we	select	colors	for	the	Geometry	we	want	to	draw?
• Shading	Models	=	flat,	gouraud,	phong
• Texture	Mapping	=	select	a	color	from	an	image.
• Materials	=	define	colors	of	the	triangles	and	assign	directly.

• How	do	we	handle	overlapping	Triangles?
• Painters	algorithm
• Z-Buffer	à the	standard.



How	do	we	represent	Geometry?

• Modeling
• Collections	of	triangles	defined	by:	Vertices,	Edges,	Faces,	Normals

• A	set	of	vertices,	a	set	of	triangle	indices	=	bare	minimum	geometry.
• Normals are	present	for	what	purposes?

• How	to	create	complex	models?
• Create	by	hand
• Use	a	program	=	Maya	or	Blender
• Scan	the	real	world	=	Lidar	Scanner	and	post-process.
• Collections	of	photographs	=	photogrammetry.

• Complex	Geometry	à eventually	all	translated	to	triangles.
• NURBS
• Parametric	Surfaces
• Subdivision	Surfaces
• Implicit	Surfaces
• Constructive	Solid	Geometry



• http://en.wikipedia.org/wiki/Image:Blender_node_screen_242a.jpg

Blender



Constructive	Solid	Geometry	(CSG)

• Represent	solid	object	as	hierarchy	of	boolean operations
• Union
• Intersection
• Difference



How	Do	We	Select	Colors	for	Pixels?

• Assign	Simple	Materials	=	simply	store	an	r,g,b color	with	each	object	or	
face.
• Shading	Models	à controls	how	colors	are	‘modified’

• Flat	Shading
• Gouraud Shading
• Phong Shading

• Texture/Image	Maps
• Assign	s,t texture	coordinates	to	Vertices	and	interpolate.
• What	are	types	of	things	we	can	use	Image	maps	for?

• Procedural	Textures
• Pixel	=	f(s,t)	where	f	is	a	function	à I	=	cos(theta)*sin(phi)

• Programmable	Fragment	Shaders
• Use	programmable	code	to	calculate	pixel	color	=	most	powerful.



How	do	we	introduce	Lighting?

• Lighting	Components
• Ambient	=	a	general	representation	for	the	common	light	in	the	room.
• Diffuse	=	the	light	that	reflects	in	all	direction	from	a	surface.
• Specular	=	the	light	that	reflects	differently	based	on	the	viewing	angle.	

• Lighting	Models
• Ambient	Lighting	Model	à Ia =	Ka*Ia
• Diffuse	Lighting	Model	à Id	=	Kd *	Id*Dot(Idir,	Normal)
• Phong Lighting	Model	à Is	=	Ks	*	Dot(2*(Dot(Idir,N)N	–Idir),Idir)^alpha*ls



How	Deal	With	Overlapping	3D	Triangles

• Painters	Algorithm
• What	is	an	example	of	this	failing?

• Z	Buffer	Algorithm
• What	is	an	example	of	this	failing?



Color	Spaces

• RGB	=	Red,	Green,	Blue
• CMYK	=	Cyan,	Magenta,	Yellow,	Black
• HSV	=	Hue,	Saturation,	Value
• HSI	=	Hue	Saturation,	Intensity
• LAB	=	Luminance,	A=green-red,	B	=	blue-yellow



Simple	Linear	Interplation

• Linear	interpolation		à c	=	a	+	t*b	:	t	is	a	parameter	from	0	to	1.0

• Bilinear	Interpolation

• Trilinear	Interpolation



Simple	Vector	Arithmetic

• Vector	addition	=	simply	addition	of	all	vector	terms.
• Vector	multiplication	=	Cross	product	
• Vector	Normalization	
• Angle	between	two	products	=	Dot	Product



What	are	Affine	Transformations?

• What	do	Affine	Transforms	Preserve?



What	are	Affine	Transformations?

• What	do	Affine	Transforms	Preserve?
• Points,	straight	lines,	parallel	lines,	planes.
• Is	the	Perspective	Projection	an	Affine	transform?

• Examples	of	Affine	transforms:
• Translation
• Scaling
• Rotations
• Shears
• Our	typical	Matrix	transformations.



So	What	Can	We	Do	Now?

• ????????

• You	Tell	Me



What	Can’t	We	Do	Yet?

• Shadows
• Reflections
• Anti-aliasing
• Scene	Graphs
• Binary	Space	Partitioning
• Advanced	Lighting	à Diffuse/Diffuse	interaction
• Stereo	Systems
• Ray	tracing	and	volume	tracing.



What	Can’t	We	Do	Yet?

• Shadows	-->		Draw	the	Scene	Twice.
• Reflections	à Draw	the	Scene	once	for	every	reflective	surface.
• Anti-aliasing	à Over-render	the	scene	and	scale	down.
• Scene	Graphs	à Organize	complex	Scenes	with	Trees.
• Binary	Space	Partitioning	à Rapid	advanced	modeling.
• Advanced	Lighting	à Diffuse/Diffuse	interaction
• Stereo	Systems	à Use	Two	Cameras.
• Ray	tracing	and	volume	tracing.	



The	End

• Work	on	your	final	projects
• Study	for	Exam
• Practice	Exam	Available	on	Thursday


