Perspective Projection

Slides Adapted from Wolfgang Hurst
Assistant Professor Game and Media
Utrecht University

Introduction
' Perspective
Parallel projection
Perspective projection

Perspective

Goal: create 2D images of 3D scenes

Standard approach: linear perspective,
l.e. straight lines in the scene become straight lines in the image
(in contrast to, e.g., fisheye views)

Two important distinctions: <>
@ parallel projection

@ perspective projection

<

Introduction
Cvervien Perspective

Parallel projection
Perspective projection

Parallel projection

Maps 3D points to 2D by moving them along a projection direction
until they hit an image plane

@ image plane perpendicular to D
viewing direction: orthographic >

Y

@ otherwise: oblique

o (note: other definitions exist) R
Characteristics: //

@ keep parallel lines parallel /
P

@ preserve size and shape of
planar objects -

—

Introduction
Hvery Perspective
_ | . Parallel projection
1 LS 1]

Perspective projection

Perspective projection

Maps 3D points to 2D by projecting them along lines that pass
trought a single viewpoint until they hit an image plane

@ distinction between oblique and P P
non-oblique based on projection """-'-31??.':,'_'.'.'_'.___."
direction at the center of the
image

Y

Characteristics:

@ objects farther from the o
viewpoint naturally become

smaller N 4

.;

Introduction

Cvervien Perspective

Parallel projection
Perspective projection

Parallel vs. perspective projection

@ Perspective projection: more natural and realistic

@ Parallel: usage in mechanical and architectural drawings

A A

@ How to get 3D objects perspectively correct on 2D screen?

@ Note: usually your API takes care of most of this, but it's
good to know what's going on behind those function calls

@ And it's a good opportunity to improve your maths skills ;)

—

Introduction
Projecting from arbitrary camera positions

Overview

Camera transformation
Orthographic projection and the canonical view volume

Windowing transform

Perspective projection

How to get 3D objects perspectively correct on 2D screen?

P N
' 3D WORLD
. —

2D SCREEN

This task i1s best solved by splitting it in subtasks
that in turn can be solved by matrix multiplication

Let's start with what we got ...

Introduction

Projecting from arbitrary camera positions

Camera transformation

Orthographic projection and the canonical view velume
Windowing transform

Overview

World space

@ Our 3D scene is given in world @

space, i.e. linear combinations
of the base vectors 2, v/, and 2 A |

@ Given an arbitrary camera “
position, we want to display our)

=) }-
3D world in a 2D image using %r
perspective projection

WORLD SPACE

Introduction

Projecting from arbitrary camera positions

Camera transformation

Orthographic projection and the canonical view velume
Windowing transform

Overview

Camera position

The camera position is specified by @

@ the eye vector €
(it's location) . .
@ the gaze vector § A

(it's direction) v

@ the image plane

(it's field of view (FOV) and 7 g
dista nce) WORLD SPACE

Introduction

Projecting from arbitrary camera positions

Camera transformation

Orthographic projection and the canonical view velume
Windowing transform

Overview

View frustum

The view frustum (aka view volume)
specifies everything that the camera

can see. It's defined by @
@ the left plane !
@ the right plane » .
@ the top plane ¢ A v

@ the bottom plane b

@ the near plane n A(E ;.,
@ the far p|a ne f WORLD SPACE

Note: for now, let's assume all our

objects are completely within the
view frustum

Introduction

Projecting from arbitrary camera positions

Camera transformation

Orthographic projection and the canonical view velume

Overview

Windowing transform

Camera transformation

CAMERA
Hmm, it would be much easier if the SPACE

camera were at the origin . ..

We can do that by moving from ~.
world space coordinates to camera A
space coordinates. A v
This is just a simple matrix "
multiplication (cf. later). — >
WORLD SPACE

Introduction

Projecting from arbitrary camera positions

Camera transformation

Orthographic projection and the canonical view velume
Windowing transform

Overview

Camera transformation

CAMERA
SPACE .-

Per convention, we look into the
direction of the negative Z-axis

Introduction

Projecting from arbitrary camera positions

Camera transformation

Orthographic projection and the canonical view volume
Windowing transform

Overview

Orthographic projection
VIEW
FRUSTUM .

Hmm, it would be much easier if we
could do parallel projection . ..

We can do that by transforming the
view frustum to the orthographic

view volume. ‘

A
Again, this is just a matrix T
multiplication (but this time, it's not *%I—» — .
that simple, cf. later).
ORTHOGRAPHIC
VIEW VOLUME

Introduction

Projecting from arbitrary camera positions

Camera transformation

Orthographic projection and the canonical view volume
Windowing transform

Overview

The canonical view volume

ORTHOGRAPHIC
A VIEWVOLUME

...

Hmm, 1t would be much easier if our 4@3 -~

values were between -1 and 1 . .. A
We can do that by transforming the l
orthographic view volume to the
canonical view volume. A
—

Again, this is just a (simple) matrix :I)——}
multiplication (cf. later).

CANONICAL

VIEW VOLUME

Introduction

Projecting from arbitrary camera positions

Camera transformation

Orthographic projection and the canonical view velume
Windowing transform

Overview

Windowing transtform

CANONICAL
Now all that's left is a parallel VIEW VOLUME

projection along the Z-axis (every
easy) and . ..

SCREEN SPACE

Introduction
Projecting from arbitrary camera positions

Overview

Camera transformation
Orthographic projection and the canonical view volume
Windowing transform

Windowing transform

...a windowing transformation in
order to display the square [—1, 1]
onto an n; X n, image.

Again, these are just some (simple)
matrix multiplications (cf. later).

—

Introduction

Projecting from arbitrary camera positions

Camera transformation

Orthographic projection and the canonical view volume
Windowing transform

Overview

The graphics pipeline (part 1)

WORLD SPACE ,
A CAMERA
snnce_l___..---"’
B v
\ " 4
B -
L -
ORTHOGRAPHIC A
VIEW VOLUME -
— -
e 4
CANONICAL
VIEW VOLUME
SCREEM SPACE

Notice that every step in this sequence can
be represented by a matrix operation, so
the whole process can be applied by
performing a single matrix operation!
(well, almost .. .)

We call this sequence a graphics pipeline

— a special software or hardware subsystem
that efficiently draws 3D primitives in
perspective.

Overview

.-3/ '_.'... ._.'
WORLD SPACE ,

A CAMERA .
SPACE .

B -
L -
ORTHOGRAPHIC A
VIEW VOLUME =
— -
-

CANONICAL
VIEW VOLUME

SCREEN SPACE

Windowing transforms

Let's start with the easier stuff, e.g.

The canonical view volume
The orthographic view volume
The orthographic projection matrix

Windowing transformation
(aka viewport transformation)

How do we get the data from the canonical

view volume to the screen?

The canonical view volume
The orthographic view volume
The orthographic projection matrix

Windowing transforms

The canonical view volume

The canonical view volume is a
2 X 2 X 2 box, centered at the origin.

(1,1, —1)
The view frustum is transformed to 3
this box (and the objects within the —2
view frustum undergo the same T
transformation).

(1, —1, —1)
Vertices in the canonical view

{—1, —1, 1}

volume are orthographically
projected onto an n, x n, image.

The canonical view volume
The orthographic view volume
The orthographic projection matrix

Windowing transforms

Mapping the canonical view volume

(1,1)

We need to map the square [—1,1]?
onto a rectangle [0, nz] x [0, n,]. (1,-1)

The following matrix takes care of
that:

o ownff
onlE ©
= o) Srol$

w1l

Windowing transforms

The canonical view volume
The orthographic view volume
The orthographic projection matrix

Mapping the canonical view volume

In practice, pixels represent unit
squares centered at integer
coordinates, so we actually have to
map to the rectangle

1 1 1 1

Hence, our matrix becomes:

Mg neg 1
2 0 2 %
0 Ny Ny 1
2 2 2
0 O 1

AN
/

The canonical view volume
The orthographic view volume
The orthographic projection matrix

Windowing transforms

Mapping the canonical view volume

Notice that we did orthographic projection by “throwing away "
the z-coordinate.

But since we want to combine all matrices in the end, we need a
4 < 4 matrix, so we add a row and colum that “doesn’t change 2" .

Qur final matrix for the windowing or viewport transformation is

T Mo 1

7 90 5

_ |0 30 T3
Mup = O 0 1 0
O 0O 0O 1

The canonical view volume
The orthographic view volume
The orthographic projection matrix

Windowing transforms

Overview

A Hence, our last step will be

WORLD SPACE _" :E“A Lsereen L canonical
| M,E,‘Tl Ysereen AL Yeanonical
----- i W ‘ - ﬂrI@'p :

) ‘ <canonical Zcanonical

B 1 !

Ok, now let's work our way up:

CANONICAL
VIEW VOLUME

SCREEN SPACE

How do we get the data from the
orthographic view volume to the canonical
view volume, i1.e. ...

The canonical view volume
The orthographic view volume
The orthographic projection matrix

Windowing transforms
1ITE formation
1storm

The orthographic view volume

(r,t,f)

... how do we get the data
from the axis-aligned box
L, 7] X [b,t] X [n, f] to a
2 X 2 x 2 box around the
origin? Y

(1,1,-1)

e (1,-1,-1)

The canonical view volume
The orthographic view volume
The orthographic projection matrix

Windowing transforms
1ITE formation
1storm

The orthographic view volume

(r,t,f)

First we need to move the
center to the origin:

1 0 0 -4

0 1 0 —% . (1,1,-1)
0 0 1 —= -Z

0 0 0 1 y

e (1,-1,-1)

The canonical view volume
The orthographic view volume
The orthographic projection matrix

Windowing transforms
1ITE formation
1storm

The orthographic view volume

(r, ¢, f)

Then we have to scale
everything to |—1, 1]:

(b7

o O
— o O O

(1,1,-1)

The canonical view volume
The orthographic view volume
The orthographic projection matrix

Windowing transforms

The orthographic view volume

Since these are just matrix multiplications (associative!), we can
combine them into one matrix:

= 0 0 0y /1 00 -4
0 2% 0 0|0 1 0 -4
— t—b 2
Mortn =1 9 7 = 0o 0o 1 =
o o0 0 1/\0 00 1
= 0 0 05
2 b
0 FH 0 -
00 2 i
0 0 0 1

Aligning coordinate systems
Camera transformation Transformation matrix

Overview

Y. Hence, our last step becomes

WORLD SPACE ,

A CAMERA .
SPACE .

..... Enl Upisel | Ny Moy

Lpizel

—_— e =

R " 4 “canonical
B - 1
ORTHOGRAPHIC A
VIEW VOLLIME =

— -

" P Now, how do we get the data in the

orthographic view volume?

That's more difficult, so let's look at
camera transformation first.

Ovarview
Windowing transforms Aligning coordinate systems
Camera transformation Transformation matrix
Perspective transform

Aligning coordinate systems

WORLD
SPACE

How do we get the camera to the

origin, i.e. how do we move from
world space to camera space? .

Remember:

@ world space is expressed by the ‘
base vectors 7, ¥, and 2

@ the camera is specified by eye CAMERA
SPACE .-

~

vector ¢ and gaze vector ¢

indowis . f Aligning coordinate systems
Camera transformation Transformation matrix

Aligning coordinate systems

To map one space to another, we
need a coordinate system for both
spaces.

We can easily get that using a view
up vector 7, i.e. a vector in the plane
bisecting the viewer’s head into left
and right halves and “pointing to the
sky”

This gives us an orthonormal base
(1, U, 1) of our camera coordinate
system (how?)

Nindowing transforn Aligning coordinate systems
Camera transformation Transformation matrix

Aligning coordinate systems

How do we align the two coordinate
systems?

O align the origins

@ align the base vectors

WVindowing transforms Aligning coordinate systems
Camera transformation Transformation matrix

Aligning coordinate systems

1 0 0 —=z.

o S o1 0 —ge

Aligning the origins is a simple translation: 0 0 1 —z
0O 0 O 1

NVindowing transf Aligning coordinate systems
Camera transformation Transformation matrix

Aligning coordinate systems

Aligning the axes is a simple rotation, if you remember that the columns of our

matrix are just the images of the base vectors under the linear transformation.

A A —,
X=YVv

WVindowing transforms Aligning coordinate systems
Camera transformation Transformation matrix

Aligning coordinate systems

Camera Spec: Basis Vectors

e = eye position. w=-g/||gl|l

g = gaze direction u=(txw)/||txw]|]|
t = Up Vector V=WXU

e, g t arein x,y,z coordinates.
W, U, vin x,y, z coordinates.

—

NVindowing transf Aligning coordinate systems
Camera transformation Transformation matrix

Aligning coordinate systems

Windowing transforms Aligning coordinate systems
Camera transformation Transformation matrix

Aligning coordinate systems

*T’ﬂ yu zu 0
1 F T) Z 0
Hence, our rotation matrix is: v Y N
L y—;_u A 0
o 0 0 1

(Remember: the inverse of an orthogonal matrix is always its transposed)

ANindowing transfi Aligning coordinate systems
Camera transformation Transformation matrix

Aligning coordinate systems

For the total transformation we get

Ty Yu 2y 0O 1 0 0 —=x

e Yo 2 O 0 1 0 —v.
Meam = Tw Yw 2w 0 0 0 1 —z
0O 0 0 1 0 0 0 1

Transforming the view frustum
Homogeneous coordinates

. Perspective transform matrix
Perspective transform] -

Overview

.-3/ '_.'... ._.'
WORLD SPACE ,

A CAMERA .

SPACE ..~

ORTHOGRAPHIC A
VIEW VOLUME =
— -
-

CANONICAL
VIEW VOLUME

SCREEN SPACE

If it wasn't for perspective projection, we'd
be done:

Lpizel
Ypizel)) ,-
P — ﬂ[vpﬁ‘[orthﬂ‘[cam

Zeanonical

1

—_ =R

Now, let's put things into perspective ...

Transforming the view frustum
Homogeneous coordinates
Perspective transform matrix

Perspective transform

Transforming the view frustum

cf. book, fig. 7.13 (3rd ed.) or 7.12 (2nd ed.)

View frustum Orthographic view volume

Perspective projection Parallel /orthographic projection

Transforming the view frustum
Homogeneous coordinates

i:’erzs;:buct.i.w.: trarls.i._u.rm Perspective transform matrix

Transforming the view frustum

cf. book, fig. 7.10 (2nd ed.; not in 3rd one)

view plane

Transforming the view frustum
Homogeneous coordinates
Perspective transform matrix

Perspective transform

Transforming the view frustum

We have to transform the view VIEW
frustum into the orthographic view FRUSTUM
volume. The transformation needs to

@ Map lines through the origin to
lines parallel to the z axis

@ Map points on the viewing ‘
plane to themselves. A

@ Map points on the far plane to

N
(other) points on the far plane. A .~

@ Preserve the near-to-far order of ORTHOGRAPHIC
points on a line. VIEW VOLUME

Transforming the view frustum
Homogeneous coordinates
Perspective transform matrix

Perspective transform

Transforming the view frustum

How do we calculate this? (cf. book, fig. 7.8/7.9 (3rd/2nd ed.))

From basic geometry we know:

Ys _ d _ d
y = and thus Ys = Y

Transforming the view frustum
Homogeneous coordinates

Perspective transform Perspective transform matrix

Transforming the view frustum

So we need a matrix that gives us

01}5:%
d
ﬂysz?y

and a z-value that
@ stays the same for all points on the near and fare planes
@ does not change the order along the z-axis for all other points

Problem: we can't do division with matrix multiplication

Transforming the view frustum
Homogeneous coordinates

Perspective transform Perspective transform matrix

Extending homogeneous coordinates

Remember: matrix multiplication is a linear transformation, i.e. it
can only produce values such as:

v =ajx+ by +c1z

Introducing homogeneous coordinates and representing points as
(z,y, 2, 1), enables us to do affine transformations, i.e. create
values such as:

v =ajx +biy+ciz+dy

Now we introduce projective transformation (aka homography)
that allows us to create values such as:

ol — s tbiyteiztds
ex+fytgz+h

Transforming the view frustum
Homogeneous coordinates

Perspective transform Perspective transform matrix

Extending homogeneous coordinates

How can we transform

; a1x+biyterz+d;
&L X emﬁ}fyigwr f d
! _ QoL Ty T2z T4aD
a vector { 4 | to avector | ¢ | = ezt futgsth
Py ! azx+bay+eaz+ds
ex+fyt+gz+h

using matrix multiplication?

We do this by replacing “the one’ in the 4th coordinate with a
value w that serves as denominator.

Transforming the view frustum
Homogeneous coordinates

Perspective transform Perspective transform matrix

Extending homogeneous coordinates

With homogeneous coordinates, the vector
(x,y,2,1) represents the point (z,y, 2).
Now we extend this in a way that the homogeneous vector
(z,y,z,w) represents the point (z/w,y/w,z/w).

And matrix transformation becomes:

a1 b1 1 dy
C|az b3 o ds

az bz c3 dj
e f g h

M~ ot @y B
— o R

Transforming the view frustum
Homogeneous coordinates

Perspective transform Perspective transform matrix

Extending homogeneous coordinates

Notice that this doesn’t change our existing framework
(i.e. all affine transformations “still work™).

We just have to set

e=f=g=0and h=1.

Then our resulting vector

—

(z,9, Z,w) becomes (2,9, 2z, 1),

and it represents the point
(Z/w,y/w, 2/w) = (#/1,y/1,2/1)

Transforming the view frustum
Homogeneous coordinates
. . Perspective transform matrix
Perspective transform

Extending homogeneous coordinates

With this extension, we do matrix multiplication:

ar b1 ca dq arx + b1y + c12 + dy

x x
as by o do y | | axx+ bzy + coz + do - g
€3 bg Cc3 dg Z asT + bgy + Cc32 + d?; N z
e f g h 1 ex + fy+gz-+h W

Followed by a step called homogenization:

/a1m+biy+61z+d1
a1 + bly +c1z2 + dl emﬁfyigztﬁzd
o ytooz
az® + bay +ezz + da homogenize ot futgith
aszz + by + caz + ds - | Getiortiozids
ex+ fy+g9z+h \ ex+fytgz+h
ex+fy+gz+h

Transforming the view frustum
Homogeneous coordinates

Perspective transform

Perspective transform matrix

Perspective transform matrix

So, by multiplication with this matrix

a;p by ¢ dp
as bs co ds
az bz c3 d3

e f g h

and homogenization,
we can create this vector

/a1m+51y+61z+d1
ex+fytgzth
ax+boyj+eaz+ds

ex+fyt+gz+h
azx+bsy+eaztds
ex+fyt+gz+h
\ ex+fyt+gz+h
ex+fy+gz+h

Q: how do we chose the
g, bi? Cq, di and e, f.{. 4, h
to get what we want for
perspective projection,
I.e. the vector

— 3

(z* denotes a z-value
fulfilling the conditions
that we specified)

Transforming the view frustum
Homogeneous coordinates

Perspective transform Perspective transform matrix

Perspective transform matrix

The following matrix will do the trick:

n 0O 0 0
0 n 0 0
O 0 n+f —fn
0 0O 1 0

Notice that
@ we are looking in negative Z-direction
@ n, f denote the near and far plane of the view frustum
@ 7. serves as projection plane

Let's verify that . ..

Transforming the view frustum
Homogeneous coordinates

Perspective transform Perspective transform matrix

Perspective transform matrix

n 0O 0 0 x T —
0 n 0 0 vl Y . %
0 0 nt+f —fn z 1 zﬂ’j;f — f homogemz? n+ f— J;—ﬂ
o0 1 0/ \1 z 1

Indeed, that gives the correct values for x; and ys.

But what about 27 Remember our requirements for z:
@ stays the same for all points on the near and fare planes

@ does not change the order along the z-axis for all other points

Transforming the view frustum
Homogeneous coordinates

Perspective transform Perspective transform matrix

Homogeneous coordinates and perspective transformation

We have z = n + f — f?ﬂ' and need to prove that . ..

@ values on the near plane stay on the near plane,
l.e. if z=mn, then 2z, = n:

ze=n+f—f=n==z2

@ values on the far plane stay on the far plane,
e if 2= f, then 2z, = n:

ze=n+f—n=f==z

and ...

Transforming the view frustum
Homogeneous coordinates

Perspective transform Perspective transform matrix

Homogeneous coordinates and perspective transformation

We have z = n + f — f?ﬂ' and need to prove that . ..

@ values within the view frustum stay within the view frustum,
l.e. if 2 > n then z5 > n:

and ...

Transforming the view frustum
Homogeneous coordinates

Perspective transform Perspective transform matrix

Homogeneous coordinates and perspective transformation

We have z = n + f — f?ﬂ' and need to prove that . ..

@ the order along the Z-axis is preserved,
l.e. if 21 > 29 then 215 > 294

1 1
EZEN
Z1 > 29

and we are done.

Transforming the view frustum
Homogeneous coordinates

. Perspective transform matrix
Perspective transform

Homogeneous coordinates and perspective transformation

Hence, the order is preserved. But how?

= .
L,
[=1 ,.'f
e .

00

Zs=n+f — E-
SO zs Is proportional to —

o [

Transforming the view frustum
Homogeneous coordinates

Perspective transform Perspective transform matrix

Perspective transform matrix

With this, we got our final matrix 7. To map the perspective view
frustum to the orthographic view volume, we need to combine it
with the orthographic projection matrix M,,ep, i.e. Mper =

n 0 0 O 20 &0

0 n O 0 0 2= X
MOTthP — Mo*rth 0 0 n4+ f —fﬂ — 0 tU f—l—il ?fﬂ

00 1 0 s o 1 ‘o

Wrap-up

Overview

WORLD SPACE

ORTHOGRAPHIC

VIEW VOLUME ,

The following achieved parallel projection:

Lpizel v
Ypizel y / , Y

g : — ﬂffvpﬁ“fo-rthﬂ'fcam
<canonical ~
1 1

And if we replace M, with My, we get
perspective projection:

Lpizel
yp%ﬁﬁﬁ — Af[1pﬂ»{perﬂf{0am.

Zeanonical

1

— o & =N

Wrap-up

B

Y v To draw lines on the screen, we can use the
| , following pseudo code:

e oV compute M,y ///view port

A ‘ o compute Myer ///persp. proj.

B - compute M ///camera space
.................................. cam P

VIEW VOLUME ‘ §>_+ M p— MV[JMDEI'MCHHI

@ o for each line segment (aj, b;) do

SCREEM SPACE p — Mai

q = Mb;
drawl ine(:z:.p/’wp, yp/wp; Iq/’wq: yq/wq)

