
Lighting & Shading

Slides courtesy: David Luebke

Shading and Lighting

Shading – assigning a color to a pixel
• Texture/Image Mapping
• Shade with simulated lights – Flat Shading, Gouraud Shading, Phong Shading.
• Per Vertex Shading – color is set for every vertex.

Lighting – calculating a color based on simulating

physical lighting.
• Simulate behavior of light in the natural world.

Lighting

 Given a 3-D triangle and a 3-D viewpoint, we can set the

right pixels

 But what color should those pixels be?

 If we’re attempting to create a realistic image, we need to

simulate the lighting of the surfaces in the scene

 Fundamentally simulation of physics and optics

 As you’ll see, we use a lot of approximations (a.k.a hacks) to

do this simulation fast enough

Definitions

 Illumination: the transport of energy (in particular, the

luminous flux of visible light) from light sources to

surfaces & points

 Note: includes direct and indirect illumination

 Lighting: the process of computing the luminous intensity

(i.e., outgoing light) at a particular 3-D point, usually on a

surface

 Shading: the process of assigning colors to pixels

Definitions

 Illumination models fall into two categories:

 Empirical: simple formulations that approximate observed

phenomenon

 Physically-based: models based on the actual physics of light

interacting with matter

 We mostly use empirical models in interactive graphics

for simplicity

 Increasingly, realistic graphics are using physically-based

models

Components of Illumination

 Two components of illumination: light sources and surface

properties

 Light sources (or emitters)

 Spectrum of emittance (i.e, color of the light)

 Geometric attributes

 Position

 Direction

 Shape

 Directional attenuation

Components of Illumination

 Surface properties

 Reflectance spectrum (i.e., color of the surface)

 Geometric attributes

 Position

 Orientation

 Micro-structure

 Common simplifications in interactive graphics

 Only direct illumination from emitters to surfaces

 Simplify geometry of emitters to trivial cases

Ambient Light Sources

 Objects not directly lit are typically still visible

 E.g., the ceiling in this room, undersides of desks

 This is the result of indirect illumination from emitters,

bouncing off intermediate surfaces

 Too expensive to calculate (in real time), so we use a hack

called an ambient light source

 No spatial or directional characteristics; illuminates all surfaces

equally

 Amount reflected depends on surface properties

Ambient Light Sources

 For each sampled wavelength, the ambient light reflected

from a surface depends on

 The surface properties

 The intensity of the ambient light source (constant for all points

on all surfaces)

Ireflected = kambient Iambient

Ambient Light Sources

 A scene lit only with an ambient light source:

Directional Light Sources

 For a directional light source we make the simplifying

assumption that all rays of light from the source are

parallel

 As if the source is infinitely far away

from the surfaces in the scene

 A good approximation to sunlight

 The direction from a surface to the light source is

important in lighting the surface

 With a directional light source, this direction is constant

for all surfaces in the scene

Directional Light Sources

 The same scene lit with a directional and an ambient light

source

Ambient Light Source Directional and Ambient Light Source

Point Light Sources

 A point light source emits light equally in all directions

from a single point

 The direction to the light from a point on a surface thus

differs for different points:

 So we need to calculate a

normalized vector to the light

source for every point we light:

p

 l

p

 l

d

Point Light Sources

 Using an ambient and a point light source:

 How can we tell the difference between a point light
source and a directional light source on a sphere?

Other Light Sources

 Spotlights are point sources whose intensity falls off

directionally.

 Supported by OpenGL

 Area light sources define a 2-D emissive surface (usually

a disc or polygon)

 Good example: fluorescent light panels

Without and With Area Light Sources Image credits: Wikipedia

The Physics of Reflection

 Ideal diffuse reflection
 ideal diffuse reflector, at the microscopic level, is a very

rough surface (real-world example: chalk)

 Because of these microscopic variations, an incoming ray of
light is equally likely to be reflected in any direction over the
hemisphere:

 What does the reflected intensity depend on? only on
direction of incoming light

Lambert’s Cosine Law

 Ideal diffuse surfaces reflect according to Lambert’s

cosine law:

The energy reflected by a small portion of a surface from a light source in

a given direction is proportional to the cosine of the angle between that

direction and the surface normal

 These are often called Lambertian surfaces

 Note that the reflected intensity is independent of the

viewing direction, but does depend on the surface

orientation with regard to the light source

Lambert’s Law

Computing Diffuse Reflection

Idiffuse = kd Ilight (n • l)

 The angle between the surface normal and the incoming

light is the angle of incidence:

l n

Idiffuse = kd Ilight cos

 In practice we use vector arithmetic:

Diffuse Lighting Examples

 We need only consider angles from 0° to 90° (Why?)

 A Lambertian sphere seen at several different lighting

angles:

Specular Reflection

 Shiny surfaces exhibit specular

reflection

 Polished metal

 Glossy car finish

 A light shining on a specular

surface causes a bright spot known

as a specular highlight

 Where these highlights appear is a

function of the viewer’s position,

so specular reflectance is view-

dependent

Image credits: Wolfgang Engel

The Physics of Reflection

 At the microscopic level a specular reflecting surface is

very smooth

 Thus rays of light are likely to bounce off the

microgeometry in a mirror-like fashion

 The smoother the surface, the closer it becomes to a

perfect mirror

 Polished metal

The Optics of Reflection

 Reflection follows Snell’s Laws:

 The incoming ray and reflected ray lie in a plane with the

surface normal

 The angle that the reflected ray forms with the surface normal

equals the angle formed by the incoming ray and the surface

normal:

l = r

Non-Ideal Specular Reflectance

 Snell’s law applies to perfect mirror-like surfaces, but

aside from mirrors (and chrome) few surfaces exhibit

perfect specularity

 How can we capture the “softer” reflections of surface that

are glossy rather than mirror-like?

 One option: model the microgeometry of the surface and

explicitly bounce rays off of it

 Or…

Non-Ideal Specular Reflectance: An Empirical

Approximation

 In general, we expect most reflected light to travel in the

direction predicted by Snell’s Law

 But because of microscopic surface variations, some light

may be reflected in a direction slightly off the ideal

reflected ray

 As the angle from the ideal reflected ray increases, we

expect less light to be reflected

 An illustration of this angular falloff:

 How might we model this falloff?

Non-Ideal Specular Reflectance: An Empirical

Approximation

Phong Lighting

 The most common lighting model in computer graphics

was suggested by Phong:

Ispecular ksIlightcos nshiny

• The nshiny term is the specular

exponent

• It is a purely empirical constant

that varies the rate of falloff

• Though this model has no

physical basis, it works

 (sort of) in practice

Calculating Phong Lighting

 The cos term of Phong lighting can be computed using

vector arithmetic:

shiny n

s light
ˆ ˆ V R Ispecular k I

 V is the unit vector towards the viewer

 Common simplification: V is constant (implying what?)

 R is the ideal reflectance direction

 An aside: we can efficiently calculate R

R̂ 2N̂ L̂N̂ L̂

 This is illustrated below:

Calculating The R Vector

R̂ 2N̂ L̂N̂ L̂

R̂ L̂ 2N̂ L̂N̂

Phong Examples

 These spheres illustrate the Phong model as L and nshiny
are varied:

The Phong Lighting Model

 Our final empirically-motivated model for the

illumination at a surface includes ambient, diffuse, and

specular components:

 Commonly called Phong lighting

 Note: once per light

 Note: once per color component

 Do ka, kd, and ks vary with color component?

 n

s i d total

shiny

V N I k L k R ka Iambient I
#lights

i1

ˆ ˆ ˆ ˆ

Phong Lighting: OpenGL Implementation

 The final Phong model as we studied it:

 OpenGL variations:

 Every light has an ambient component

 Surfaces can have “emissive” component to simulate glow

 Added directly to the visible reflected intensity

 Not actually a light source (does not illuminate other surfaces)

 n

s i d total

shiny

I k N L k V R ka Iambient I
#lights

i1

ˆ ˆ ˆ ˆ

 ˆ ˆ ˆ ˆ shiny
#lights n

total e s s

i1

I k Iaka Id kd N L I k V R

Applying Illumination

 We now have an illumination model for a point on a

surface

 Assuming that our surface is defined as a mesh of

polygonal facets, which points should we use?

 Keep in mind:

 It’s a fairly expensive calculation

 Several possible answers, each with different implications for

the visual quality of the result

Applying Illumination

 With polygonal/triangular models:

 Each facet has a constant surface normal

 If the light is directional, the diffuse reflectance is constant

across the facet

 If the eyepoint is infinitely far away (constant V), the specular

reflectance of a directional light is constant across the facet

Flat Shading

 The simplest approach, flat shading, calculates

illumination at a single point for each polygon:

• If an object really is faceted, is this accurate?

• No:

– For point sources, the direction to light varies across the

facet

– For specular reflectance, direction to eye varies across

the facet

Flat Shading

 We can refine it a bit by evaluating the Phong lighting

model at each pixel of each polygon, but the result is

still clearly faceted

 To get smoother-looking surfaces

we introduce vertex normals at each

vertex

 Usually different from facet normal

 Used only for shading (as opposed to what?)

 Better approximation of the real surface that the polygons

approximate

Vertex Normals

 Vertex normals may be

 Provided with the model

 Computed from first principles

 Approximated by averaging the normals of the facets

that share the vertex

Gouraud Shading

 The normal vector at vertex V is calculated as the

average of the surface normals for each polygon

sharing that vertex
For each visible polygon

evaluate illumination model

at vertices using vertex

normals

For each scanline

calculate intensity at edge

intersections (span extrema)

by linear interpolation

For each pixel on scanline

calculate intensity by

interpolation of intensity at

span extrema (like scan

conversion with vertex

colors)

Gouraud Shading

 This is the most common approach

 Perform Phong lighting at the vertices

 Linearly interpolate the resulting colors over faces

 This is what OpenGL does

 Does this eliminate the facets?

 No: we’re still subsampling the lighting parameters

(normal, view vector, light vector)

Phong Shading

 Phong shading is not the same as Phong lighting,

though they are sometimes mixed up

 Phong lighting: the empirical model we’ve been discussing

to calculate illumination at a point on a surface

 Phong shading: linearly interpolating the surface normal

across the facet, applying the Phong lighting model at every

pixel

 Same input as Gouraud shading

 Usually very smooth-looking results:

 But, considerably more expensive

Phong Shading

For each visible polygon

For each scanline

Calculate normals at edge

intersections (span extrema) by

linear interpolation

For each pixel on scanline

Calculate normal by interpolation of

normals at span extrema

Evaluate illumination model with that

normal

Flat, Gouraud and Phong Shading

Phong Lighting: Intensity Plots

Phong Lighting: The nshiny Term

 This diagram shows how the Phong reflectance term drops

off with divergence of the viewing angle from the ideal

reflected ray:

 What does this term control, visually?

