
CS 421 Algorithms (Summer 2021)

Programming Assignment #1, Due on 7/06/2021, Tuesday (11PM)

Introduction:

This assignment will ask you to write JAVA programs to solve the Knight’s Tour problem using the
exhaustive search with backtracking technique. The technique solves problems by searching
all possible next steps. If the search cannot go further, it requires going back to the previous step.
There are many well known algorithms using this technique such as the DFS search on a graph
and the 8-queen problem.

Description:

The Knight Tour problem is described as follows. A chess board has n rows and n columns, where
n > 2. From its current position, a knight’s next position will be either two rows and one column
or one row and two columns from the current position.

Given n and a starting position, the problem tries to find the sequence of moves for the knight to
travel every position on the chess board exactly once. For example, one possible solution for the
problem with n = 8 and starting position (0, 0) is

0 1 2 3 4 5 6 7
0 1 38 55 34 3 36 19 22
1 54 47 2 37 20 23 4 17
2 39 56 33 46 35 18 21 10
3 48 53 40 57 24 11 16 5
4 59 32 45 52 41 26 9 12
5 44 49 58 25 62 15 6 27
6 31 60 51 42 29 8 13 64
7 50 43 30 61 14 63 28 7

Table 1: The integer i in each entry indicates the i-th move of the knight

I would suggest to have three java files for this problem, which are KnightTour.java (driver
program), KnightBoard.java and Position.java.

Search Strategies:

This assignment will ask you to implement three different ways to search for a solution.

• Basic Search: Try next eligible move from a position A in a clockwise sequence as shown in
Table 2.

To improve the search time of the knight tour problem, we can apply a heuristic while
performing the search. There are two potential search heuristics.



8th 1st

7th 2nd

A

6th 3rd

5th 4th

Table 2: The sequence of next eligible moves in a basic search

• Heuristic I: When there are multiple eligible next moves, try the one that is closer to the
boarder of the chess board first. If there is a tie, pick the one based on the clockwise sequence.
To measure how close a position A is to the boarder, a “distance” of the position A to the
boarder can be calculated as (the smaller vertical distance from A to the horizontal boarders)
+ (the smaller horizontal distance from A to the vertical boarders). For example, in Table 2,
the “distance” of the position A to the boarder is 3 + 3 = 6.

• Heuristic II (Warnsdorff’s heuristic): When there are multiple eligible next moves, try the one
that has the fewest onward moves first. If there is a tie, pick the one based on the clockwise
sequence.

What you need to do:

1. Implement three options to search the chess board as below:

java KnightTour <0/1/2 (no/heuristicI/heuristicII search)> <n> <x> <y>

where n is the size of the chess board, (x, y) is the starting position at x row and y column.
The program should print the total number of moves tried to reach a solution or to reach a
conclusion of no solution. You can find some sample results in

/home/JHyeh/cs421/labs/lab1/files/sample output

2. Run your program three times, one for each search option, with n = 7, x = 1, y = 1 and report
the number of moves in each search in a README file. In addition, if there is a solution,
please print the solution (as Table 1) for each search in the README file. Note that if a
given problem instance has no solution, then the heuristic search cannot improve the search
efficiency.

submission:

Submit your program from onyx by copying all of your java files to an empty directory (with no
subdirectories) and typing the following FROM WITHIN this directory:

submit jhyeh cs421 p1


