
CS 421 Algorithms (Summer 2021)

Homework #2 (80 points)

Due Date: at noon on 7/27/2021 (Tuesday).

This homework will be discussed during the class on 7/27/2021.

This homework is a preparation for 2nd mid-term exam.

2nd mid-term exam will be taken place on 7/28 (Wednesday).

Submission Instruction:

• Convert your homework 2 to a single PDF file and the file name should be in a format using
your name. For example, JoeSmith421H2.pdf

• Log into onyx and upload your homework 2 to an empty directory (i.e., the directory will
contain only your homework 1 file).

• Within the directory, issue the following command
submit jhyeh cs421 h2

1



• Q1(14 points): 0-1 Knapsack Problem:

There are 5 items and a knapsack. The knapsack can carry at most 6 pounds. The following
table gives the values and weights of all items. If we would like to select items and put them

items I1 I2 I3 I4 I5
worth 11 8 2 5 14

weight 4 3 1 2 5

into the knapsack so that the value of the load is maximized.

(a)(10 points) Please construct and draw the necessary tables.

(b)(4 points) Based on the tables you construct, what is the optimal solution (the items you
picked).

2



• Q2(31 points): Dynamic programming VS. Greedy Algorithm

A variant of the 0-1 knapsack problem is described as follows.
Input: There are n items {1, 2, . . . , n}. The i-th item weights wi pounds, 1 ≤ i ≤ n. The
knapsack can carry at most W pounds.
Output: We would like to choose items and put them into the knapsack so that the weight
of the load is maximized.

(a)(4 points) Does this variant of 0-1 knapsack problem have the optimal substructure prop-
erty?

(b)(10 points) If your answer to part(a) is “No”, please disprove (i.e., give a counter-example)
the optimal substructure property of the problem. Otherwies, please prove the following
optimal substructure statement.

Statement: Let L = {. . . , j, . . .} be an optimal load (i.e., w(L) is maximized)

for the problem choosing from n items S = {1, 2, . . . , n} and with knapsack carrying

at most W pounds. Then a load L′ = L−{j} must be an optimal load (i.e.,

w(L′) is maximized) for the subproblem choosing from n − 1 items S′ = S −
{j} and with knapsack carrying at most W − wj pounds.

3



(c)(10 points) Letm(i, j) denote the maximal weight of a load for a subproblem – maximizing
the weight of a load by choosing items from {1, 2, . . . , i} and put them into a knapsack
which can carry at most j pounds. Please recursively define m(i, j).

m(i, j) =



























if i = 0 or j = 0

if i, j > 0 and wi > j

if i, j > 0 and wi ≤ j

(d)(7 points) A greedy algorithm is described as follows. We first sort the items in an order
of non-decreasing weights. Then, we just simply put the items, in the sorted order, to the
knapsack until the knapsack cannot carry anymore items. This algorithm is incorrect.
Please give a simple counter-example to disprove the algorithm.

4



• Q3(20 points): Amortized cost analysis:

If we use two queues “data queue” and “working queue” to implement a stack s by the
following way. Suppose that both queues have no size limit.

s.push(item)

1. enQueue the item into the data queue.

s.pop()

1. move all the items except the last one from the data queue to the working queue

2. deQueue from the data queue and return

3. now the names of the data queue and the working queue are swapped.

That is, working queue -> data queue and data queue -> working queue

(a)(10 points) Suppose that we would like to analyze the amortized costs using the accounting
method. Assume there are k items in the stack before the i-th operation. If the i-th
operation is a pop operation and we assign 2(k− 1) amortized cost to it, then how much
amortized cost for a push operation should be assigned? Justify your answer.

5



(b)(10 points) If the potential method is used, please define a potential function Φ so that the
amortized costs for push and pop are constant time and linear time respectively. Assume
that there are k items in the stack before the i-th operation. Justify your answer.

6



• Q4(15 points): Graph Search Algorithms:

A weighted and directed graph is given below.

A

B

C

D

E

F

G

H

I

J

K

L

(a)(5 points) Let vertex A be the source vertex, please find a (any) discovering sequence of
vertices in a BFS search.

(b)(5 points) Please find the discovering sequence of vertices in the DFS search, assuming
that during the search if there are multiple vertices can be discovered next, please dis-
cover vertices based on their alpabetical order.

(c)(5 points) Based on the DAG above, please find the topological sequence of vertices,
assuming that during the DFS search if there are multiple vertices can be discovered
next, please discover vertices based on their alpabetical order.

7


