CS 421 Algorithms (Summer 2021)

Homework \#1 (80 points)

Due Date: at noon on $7 / 13 / 2021$ (Tuesday).

This homework will be discussed during the class on $7 / 13 / 2021$.
This homework is a preparation for 1st mid-term exam.

1st mid-term exam will be taken place on $7 / 14$ (Wednesday).

Submission Instruction:

- Convert your homework 1 to a single PDF file and the file name should be in a format using your name. For example, JoeSmith421H1.pdf
- Log into onyx and upload your homework 1 to an empty directory (i.e., the directory will contain only your homework 1 file).
- Within the directory, issue the following command submit jhyeh cs421 h1

- Q1(10 points): Asymptotic Notations

(a)(3 points) Which one of the following is a wrong statement?

1. $\Theta(n)+O(n)=\Omega(n)$
2. $\Theta(n)+O(n)=O(n)$
3. $\Theta(n)+\Omega(n)=\Theta(n)$
4. $f(n)=o(g(n))$ implies $g(n)=\Omega(f(n))$
(b)(7 points) Please use the original definition (i.e., the definition using sets) of Θ-notation to show $n^{2}-1000 n \log _{10} n=\Theta\left(n^{2}\right)$.

- Q2(14 points): Divide-and-Conquer

Suppose that a computer does not know how to apply dynamic programming techniques to compute a function $f(n)$, but it knows how to use the divide and Conquer approach to compute $f(n)$ as follows. The computer takes only constant time for scalar arithmetic operations.

$$
f(n)= \begin{cases}0 & \text { if } n=0 \\ 1 & \text { if } n=1 \\ 2 \cdot f(n-1)+n & \text { if } n>1\end{cases}
$$

(a)(10 points) Please write down the three steps of Divide, Conquer and Combine to describe how the computer calculates $f(n)$.

Divide: Do nothing.
Conquer:

Combine:
(b)(4 points) Please write down the running time recurrence if $f(n)$ is computed using the above approach.

- Q3(30 points): Recurrences

(a) (10 points) Given a recurrence $T(n)=3 T(n-1)+1$, please draw the recursion tree and derive a tight bound of $T(n)$.
(b)(10 points) Given a recurrence $T(n)=3 T(n-1)+n$, please use the substitution method to verify $T(n)=O\left(3^{n}\right)$. Hint: use the hypothesis $T(n) \leq c\left(3^{n}-n\right)$ for some $c>0$.
(c)(10 points) Please solve the recurrence $T(n)=3 T(n-1)+n^{2}$ using the Master Method. Hint: try to transfer the equation to another form and then solve it.

- Q4(26 points): Dynamic programming

(a)(10 points) For a Matrix-Chain problem with 4 matrices A_{1}, A_{2}, A_{3} and A_{4}, please construct and draw the two tables as in the book if the dimension vector for these four matrices is $\langle 5,2,5,1,2\rangle$.
(b)(3 points) Based on the tables in (a), what is the optimal parenthesization for the product $A_{1} A_{2} A_{3} A_{4}$?
(c)(10 points) For a LCS (longest common subsequence) problem with two input sequences $X=<C, A, B, A, B, D, C>$ and $Y=<C, B, A, B, D, B, C>$, please draw the table(s) as in the book.
(d)(3 points) Based on the table(s) in (c), what is the longest common subsequence for X and Y ?

