
ScreenCrayons: Annotating Anything
Dan R. Olsen Jr., Trent Taufer, Jerry Alan Fails

Brigham Young University
Computer Science Department, Provo, Utah, USA

olsen@cs.byu.edu,

ABSTRACT
ScreenCrayons is a system for collecting annotations on any
type of document or visual information from any
application. The basis for the system is a screen capture
upon which the user can highlight the relevant portions of
the image. The user can define any number of topics for
organizing notes. Each topic is associated with a
highlighting “crayon.” In addition the user can supply
annotations in digital ink or text. Algorithms are described
that summarize captured images based on the highlight
strokes so as to provide overviews of many annotations as
well as being able to “zoom in” on particular information
about a given note and the context of that note.

General Terms:
Human Factors

Author Keywords
Annotation, Screen capture, digital ink, image
summarization.

ACM Classification Keywords
H.5.2 User Interfaces

INTRODUCTION
This paper describes the ScreenCrayons system for
capturing and managing annotations for a variety of tasks
using any application. The goal is for the system to be very
flexible, lightweight and widely applicable.

The fundamental metaphor for the modern office
workstation has been paper. Beginning with the design of
the Xerox Star, windows have been modeled as active
sheets of paper. The most commonly used word-processing,
drawing and spreadsheet applications all use paper as their
metaphor. In the days before computers, creating
documents was hard (typewriters are not error-friendly).
Distributing paper documents was hard. Modifying paper

documents was hard. Annotating paper documents by
making marks on them was easy. Because of this disparity
of labor, the focus of most office tools has centered on the
creation and dissemination of documents that can readily be
rendered onto paper. In this context the process of
annotating the paper received much less attention despite its
importance in actual use.

The advent of very cheap storage, cheap communication via
the Internet, standard formats such as PDF or HTML and
the pervasive availability of computing has caused a shift in
our usage of documents. For an increasing number of
people, the majority of their reading experience is digital
rather than paper. Email has rapidly replaced the paper
letter for much correspondence. Scholars increasingly
subscribe to digital libraries rather than print journals.
Technical manuals and promotional materials increasingly
come through the web.

Adler et al [1] have reported that reading occupies 70% of
document-related activity. However, for many subjects a
substantial amount of reading time occurred in conjunction
with writing. In the same study creation and updating of
documents constitutes only 18% of writing while reading.
On the other hand annotation and note taking consume 48%
of the time. Schilit describes this as “active reading” [19]
where the user is augmenting, filtering, highlighting,
summarizing and organizing the information that they are
reading. What we need are widely applicable computer-
based tools that support this activity.

We will first provide an extended example of the range of
annotations that we expect of our system. We then will
review prior work in annotation, followed by the
architectural issues with being able to annotate anything
and review our notes in a meaningful way. This is followed
by a description of the note taking process along with
algorithms for associating image regions with our highlight
marks. Lastly we discuss how we use these highlights,
regions and notes to provide summarized views.

An Example
Consider Fred the biologist. Fred is an expert on nematode
genomics. When he starts work one morning, he begins to
read his email and finds that one of his students has posted
a copy of her thesis on a web site so that he can review it.
Fred wants to complete his email so he makes a note of

 Vo
Permission to make digital or hard copies of all or part of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage
and that copies bear this notice and the full citation on the first page.
To copy otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

UIST ’04, October 24–27, 2004, Santa Fe, New Mexico, USA.

Copyright © 2004 ACM 1-58113-957-8/04/0010. . . $5.00.
where the thesis is located and continues. He soon finds that

 165lume 6, Issue 2

he is requested to do an urgent review for a journal paper.
Again he makes a note of the paper and continues. He finds
a message with a budget for a research proposal. He notes
that the budget’s travel and fringe benefits are not correct
and sends the note back to his colleague. He also finds a
message from a student indicating the results of a
successful sequencing analysis that he adds to his list. Fred
finishes his email, reviews his “todo” notes and decides that
his student’s experiments are the most important.

Fred then runs a special sequencing program that shows the
results of the latest supercomputer run. He is excited by the
results but not completely happy with the software settings
that were used. He makes a note on those settings and
forwards it to his student.

Fred then downloads the thesis and opens it in his word
processor. While reading he makes notes of corrections. In
the middle of his reading he thinks of a related paper that
his student has not seen. He opens a web browser and
begins a search for “nematodes.” While doing the search he
sees a page for a new center for nematode genomics. He
makes a note to remember to review the site later. He also
encounters the “Nematode Songbook” [17] with a hilarious
rendering of an old western tune redone with worms. He
notes this in his list of “worm humor” to share at a future
conference.

Having completed the thesis reading Fred begins work on
the journal paper that came to him as a PDF file. Working
through the paper he finds several problems with its
references to prior work. He makes notes as he goes along.
At one point he finds a relevant paper and makes a note that
links a paragraph in the new paper with the place where it
should be cited in the one that he is reviewing. Having read
the paper Fred goes back through his notes and begins to
write the review. He reorganizes his notes into a better
structure for the review and then begins to write. When he
reaches one of his notes he finds that he needs the actual
reference of a paper. He looks at the context of the note to
find where the paper came from so that he can tell the
author where to look.

There are several points that this example illustrates about
note taking.

1. Notes occur spontaneously during work and as
with the “Nematode Songbook” they are not
always related to the current task.

2. Notes occur in the context of many applications. In
our example Fred used email, a word processor, a
spreadsheet, a web browser, a PDF reader and a
homegrown piece of special software.

3. Notes are frequently a summary or highlighted
excerpts from other reading. They serve to focus
attention so that in the future the entire document
does not need to be reread.

4. Notes are frequently a source for later writing as in
the review to be written.

5. Notes can link disparate sources of information
where the user has found a relationship, as in the
linking of a desired citation to a segment of
another paper.

The goal of ScreenCrayons is to provide a lightweight,
universal note taking facility that satisfy all of these needs
without interfering with other work.

Prior Work
There have been several projects to support the annotation
and organization of information. Some systems such as
Notecards [14], gIBIS [8] and Aquanet [15] have the user
enter their notes in separate structures. These approaches
provide structure to the information, but they are self-
contained and insular. The user must explicitly enter the
desired information into the structure and in doing so much
of the context is lost. The note is there but other than a
possible URL or bibliographic reference, the rest of the
context from which the note was taken is no longer readily
available. A problem with notes is that their creation is
viewed as work to be minimized, whereas their ultimate use
frequently requires much more information. A user is faced
with “work more now” to support “possible use later”. This
work/future benefit tradeoff is usually resolved by a choice
to work less now in extracting information for notes. We
need a lighter weight (easy to create) model of note taking
that preserves as much context as possible so that it can be
retrieved. Thus the user gets a great deal of preserved
information with little current effort at the time a note is
taken.

The XLibris project [19] tries to bring annotation in contact
with the reading process through a “reader’s notebook” and
annotation marks. XLibris provides a rich set of annotations
and nice mechanisms for summarizing documents and
searching for other documents based on the annotations.
The annotation facility, however, is built into a special
reading application. This would not work for notes
concerning Fred’s gene sequencing software. Nobody else
in the world has software like Fred’s, but he needs to make
and share notes about it. Microsoft’s discussion and
comment facility allows notes to be embedded or attached
to Office documents and then shared with others. Adobe
Acrobat allows notes to be added to documents.

An important early annotation system was the Dynomite
project [20]. The primary data was digital ink and audio.
The digital ink would capture the user’s intent and
comments, and the audio would capture contextual
information that was going on in the environment. In many
ways we follow this approach except that we use the user’s
computer screen as context information rather than ambient
audio. Dynomite’s use of ink and audio do have the nice
property of being independent of the user’s purpose. We

 166

g

seek to mirror this property with image rather
information.

Most annotation systems only support ann
specific artifact/document file types. These
XLibris reading appliance, Microsoft Office,
XML formats [13] or HTML [4]. The Watson
provides for “application adapters” that must
written for each new application. An annotation
depends upon specific application impleme
awkward to use and is frequently deimplemen
releases of the software. More importantly it is
to learn new, mutually incompatible note syste
application. The E-Quill[9] annotation system p
flowable notes, but can only create such n
Internet Explorer and can only annotate web pa
our goals is to provide annotation facilitie
independent of application implementations o
formats while still providing a rich capability. W
“information foraging” tool that is pervasive ac
user’s work.

The Pervasive Annotation Architecture Proble
Creating a pervasive annotation facility p
architectural challenge. The easiest approach to
is to create a special purpose model for all art
annotated. Anything to be annotated must be tra
this model. That is the approach taken by
annotation tools. The virtue of this approach
notes can be embedded in the model represent
variety of views that display content relative to
can be designed and implement. The challenge

 Volume 6, Issue 2
Figure 1 - Crayon Highlightin
 than audio

otations of
include the
specialized

 system [7]
be uniquely
 system that
ntations is
ted by new
very painful
ms for each
rovides nice
otes using

ges. One of
s that are
r their file

e want an
ross all of a

m
resents an
 annotation
ifacts to be
nslated into
most prior

 is that the
ation and a
 those notes
 is that the

artifact model design restricts what can and cannot be
annotated. If we take a document-centric approach like
XLibris or a digital ink approach like Dynomite there are
many applications that are shut out because our information
model is not sufficiently rich to represent them. This also
necessitates creating “translators” as in Watson. If no
translator exists for your application, then there is no
annotation facility.

A second approach is to create a special protocol to which
all applications must conform. Such a protocol would
include “here is a digital ink stroke, return me an annotation
reference”, “here is an annotation reference, display it in
your application” and “here is an annotation reference,
return me its bounding box on the screen”. Such a protocol
would allow annotations to be attached to any application
that conforms to the protocol. The down side of this
approach is getting all interesting applications to conform.

The approach used in ScreenCrayons is to annotate
exclusively in image space. All GUI applications must
render their information as images. All major windowing
systems provide the ability to capture screen images. Thus
we have a universal medium for annotating any information
from any application without requiring the cooperation of
that application. This is the heart of making annotations
pervasive. The downside is that without access to the model
the annotations cannot take advantage of the model’s
structure to behave intelligently. ScreenCrayons attempts to
overcome this by inferring simple structure from the image
itself. Another disadvantage is that some of the non-visible
context is lost. This would include portions of a document
currently scrolled out of sight.

 167

Requirements for an Annotation Tool
In thinking about annotations we find also that they are
frequently spontaneous and not always related to the task at
hand. One may receive an email, encounter a web page or
see a reference in a paper that relates to a task other than the
user’s current activity. When this occurs, the user
experiences a tension between breaking the flow of the
current task or potentially forgetting this nugget of
information for a different task.

Our requirements for an annotation tool are: 1) the notes
must be taken in the context of the user’s work rather than
in a separate application, 2) taking notes must be a very
lightweight task involving very little user effort, 3) the note
must preserve the visual context in which the note was
taken, 4) the resulting notes must be condensed and
summarized to that they can be easily browsed and
manipulated later.

There are two fundamental pieces to an annotation system.
The first is how notes are created and stored and the second
is how the user browses the collection of notes. We will
address each of these in turn.

CAPTURING ANNOTATIONS
As the user is reading documents, browsing the web or
performing other work they may come upon some
information that is of interest to a topic. Note taking
involves three activities: 1) indicating the artifacts on the
screen to be annotated, 2) indicating the topic to categorize
the note and 3) adding optional commentary to indicate
what is important about this note.

Consistent with our work on Image Processing with
Crayons [10] we associate each of the user’s topics of
interest with a crayon. Crayons are essentially digital ink
dispensers that are kept in a “crayon box.” This is similar to
the Intelligent Pen [13]. These crayons are similar to the
categories in Dynomite [20]. When the user sees
information of interest to some topic, they grab the crayon
for that topic from their crayon box and use the crayon to
draw a highlight on the screen as in figure 1. This “scribble
on the screen” metaphor is trivial to learn and completely
independent of any application.

Note capture is implemented by performing a screen
capture. The Freestyle [11] system and Alias Sketchbook
Pro[2] use screen capture for annotation. However, to just
file away the screen shots is not sufficient because the
results are unusably large. By definition, the user can only
view one full screen shot at a time. Sketchbook treats its
captures as images to be panned and zoomed rather than as
notes to be summarized or expanded. Other than a
traditional layered drawing mechanism, Sketchbook
provides no convenient mechanism to visually distinguish
or organize annotations relative to the image that they
annotate. This is extremely awkward as an annotation tool.
Microsoft provides a “snipping tool” for the tablet PC that
can capture small screen fragments to file away as notes.

The problem with capturing selected sections is that small
easy to use snippets lose their visual context. Our approach
is to allow the user to annotate what interests them and then
use that information to summarize what was captured. The
process of perusing captured images and their summaries
will be discussed in a later section.

After capture, the image is displayed in a borderless
window on top of all other windows. To the user it looks as
if nothing has changed except that all of the applications are
inoperative and mouse gestures will draw highlights on the
screen instead of interacting with the application. To show
the user that this is a new mode, the active window is
bordered in a transparent highlight that is the same color as
the selected crayon and all background applications are
blended with a light color to deemphasize them. This makes
it clear to the user that they are in crayon mode. The
“crayon box” also appears on the screen. The crayon box
provides several options for selecting other crayons, saving
the note, canceling the note or editing the crayons.

Requiring the user to context switch into “crayon mode”
may seem cumbersome, but there is no other choice.
Without control of the underlying applications, there is no
other way to distinguish between annotation inputs and
application inputs. Any annotation pen or mouse gesture
could also be interpreted as an input to the underlying
application. The overlay of the entire screen with an
annotation image preserves application context while
clearly indicating that input gestures are now annotations,
not application operations.

In ScreenCrayons, a note is composed of a name, a screen
image, the ink from the crayon highlights and zero or more
comments created by the user using either ink or typed text.
This representation is usable on any application and is
independent of any specific implementation.

The annotation process has two modes: highlighting and
commenting. The user switches between these two modes
by a button on the crayon box. When highlighting, the user
uses the crayon to indicate those portions of the image that
are related to the crayon’s topic. The highlight strokes are
immediately associated with a region and displayed on the
image as a rectangle in the color of the crayon, as shown in
figures 1 and 2. This shows the user what portion of the
image the system thinks are important based on the
highlight and allows the user to make corrections if
necessary. The user can make a more precise encirclement
stroke to select exactly the right region. We will discuss the
stroke/region association algorithm in a later section.

We separate highlights from comments for three reasons.
The first is that our annotation system must know which
portion of the full screen image actually applies to the
selected topic. Capturing notes is only part of the problem.
The user will later want to review and reorganize the notes.
Presenting a full screen image in such a case will be very
cumbersome. The highlights are what guide image
summarization. The second reason for the separation is that

 168

the user’s commentary should be searchable. We did not
implement searching handwritten ink, however, the Tablet
PC’s Journal application clearly demonstrates the desired
functionality. The third reason is that although documents
have white space margins in which to write notes, most
applications do not. Even documents do not provide
sufficient white space to handle the size handwriting that
most people use with digital pens. When switching to
comment mode, the unselected regions of the screen
become usable scratch space on which to write notes.

COMMENTS
When the user switches from highlight mode to comment
mode, the system will mask all parts of the original image
that have not been highlighted and surround the highlighted
regions with boxes, as shown in figure 2. The masked area
provides blank space where comments can be written.

Comments are simply digital ink, for notes, arrows,
diagrams or making other marginalia symbols, or they are
small pieces of text that the user can type. This allows the
user to pick whatever modality fits the need and the input
devices they have at hand.

Figure 2 – Masking unhighlighted regions

We use the regions for each highlight stroke that were
calculated in highlight mode to associate a region of the
image with each stroke. We then obscure all unhighlighted
regions by blending them with a light color. This is similar
to the highlighting technique described in [18]. By using a
blend, the unselected regions fade into the background. This
highlights the selected regions while preserving their
context. The blended areas now form a more uniform
region where ink and typed notes can readily be seen.

HIGHLIGHT/IMAGE REGION ASSOCIATION
Each highlight mark that the user makes is associated with
some region of the image. This association can be
challenging because of the various kinds of marks that a
user might make and the fact that the annotation system has
no control over the underlying applications and how they
lay out information. Golovchinsky [12] and later Bargaron
[4] identify five types of marks that people make on paper.
They are: circles (figure 2-a), underlines(2-b), highlights(2-
c), margin bars (2-d) and marginalia. Similar annotation
marks are found in XLibris[19]. For our purposes we
consider the first four to be highlighting activities that
identify areas of interest. The marginalia we classify as
comments. Each of these highlights has distinct ways in
which they are associated with the imagery being
annotated.

The highlight/region problem is one of taking each ink
stroke in the highlight, classifying it into one of the four
categories and then computing a bounding rectangle for the
associated image region. Unlike other stroke/content
association techniques, we do not have an underlying model
of the information. We must infer all structure from the
image with no other knowledge.

Classification of the marks is based on the bounding box for
the ink stroke. The vertical/horizontal aspect ratio of the
bounding box can be used to detect vertical margin bars and
horizontal underline/highlight marks. Anything that is not a
vertical or horizontal line is treated as a circle/scribble.

Once the highlight strokes have been classified, we next
must associate those strokes with rectangular image
regions. This is complicated by several factors. First is the
diversity of images that one might highlight ranging from
landscape images, floor plans, schematics, documents,
spreadsheets and anything else people may want to
annotate. Many times there are textures such as web page
backgrounds that people treat as uniform when in fact they
are not. Lastly there is the fact the people make sloppy
marks and are not completely accurate about what they
want to highlight.

The basis of our approach is to extract natural boundaries
from the image that can then be associated with the marks
as in figure 3. Our basis for such natural boundaries is that
most applications use long runs of “uniform” color to
visually segment their presentations. Such runs might be
borderlines, white space between lines of text or paragraphs
or other long uniform areas. We must account for the fact
that people frequently treat textured or gradient
backgrounds as uniform in the sense of requiring attention
when in pixel terms they are not uniform at all.

 169Volume 6, Issue 2

Figure 3 – Natural Image Boundaries

Continuity Images
To rapidly recognize these “uniform” runs we create
vertical and horizontal continuity images. Continuity
images are inspired by the integral images approach to
computing features across large areas of an image in
constant time. The algorithm for computing a horizontal
continuity image is as follows.

Forall (X and Y in IMG)
if (X==0) HCONT[X,Y]=1
else if (diff(IMG[X,Y],IMG[X-1,Y])<threshold)

 HCONT[X,Y]=HCONT[X-1,Y]+1
 else
 HCONT[X,Y]=1;

The nature of the continuity is defined by the diff function
and its threshold. Our implementation uses a difference
function that is the maximum of the absolute values of the
RGB differences. Our empirical trials found a threshold of
55 in a 0-255 RGB space to perform well. Essentially we
are looking for intensity contrast. When people use textured
backgrounds, they tend to keep the contrast low so that the
foreground detail will stand out. Note also that this
algorithm compares the difference pixel by pixel. Gradient
backgrounds have small pixel-to-pixel differences even
though there may be a large difference from one end of the
run to another. We compute the vertical continuity map in a
similar manner.

1 1 2 1 2 3 4 5 6

Figure 4 – Run Counting in Continuity Images

As figure 4 shows, each pixel of the horizontal continuity
map contains the number of the pixels to the left that are
part of the same “uniform” run. If we start from the
rightmost pixel, we can find all of the runs in O(R) where R
is the number of runs on that line. We can do this because
the run length stored in one pixel will tell us where the next
run to the left will end. Since we are only interested in
regions with a few long runs this algorithm is very efficient.

We can discard any line that shows several short runs. The
continuity image allows us to evaluate the lengths of
various runs in any part of the image in constant time. This
is very important to an efficient boundary search algorithm.

In searching for a boundary, we have a predicted length for
that boundary. In the case of an underline, for example, the
predicted boundary length is the length of the underline
stroke. To find a boundary we search for a run that is
greater than 98% of the predicted boundary length. The
purpose of the 98% is to handle special cases of borders and
other kinds of marks that are naturally in some images.
When searching for horizontal boundaries, such as space
between lines, we look for single runs of sufficient length.
However, when searching for vertical boundaries we
require 3 boundary runs together of acceptable length to
declare a vertical boundary. This is to prevent accidental
detection of aligned character or word spacing as a major
boundary.

Stroke/Region Association
Having classified the highlight strokes and computed our
continuity maps we now can compute the rectangular
region associated with each stroke. Our algorithm searches
in each of the four directions to find natural boundaries that
correspond to each ink stroke. Stroke/region association has
four cases: 1) area marks such as circles and scribbles, 2)
horizontal underline, 3) horizontal highlight and 4) margin
bars.

Circles and scribbles
Finding the corresponding regions of circle and scribble
strokes is the easiest. We start with the bounding box of the
stoke. We then shrink this bounding box to account for ink
marks that actually surround the desired region rather than
highlighted over the top. As shown in figure 5, we search
in each direction from the ink stroke’s bounding rectangle
to find the region bounds.

Figure 5 – Finding Regions for Circles/Scribbles

Underlines
If a horizontal stroke is in a boundary region of the same or
greater length, as in figure 6-a, then we assume the stroke is
an underline. From the vertical center of the ink stroke (red
line) we search up to find the bottom boundary (green line)
and then search up from that boundary to find the top
boundary (green line). We then shrink the length of the
highlight to give starting points for the vertical boundaries.
We use the space between the top and the bottom as our

 170

predictor for the vertical boundaries. We then search
outward to find these boundaries.

Horizontal highlights
Horizontal ink marks that are not in a boundary area are
assumed to be highlights, as in figure 6-b, and we search
down from the middle of the ink stroke to find the bottom
boundary and then up to find the top. After finding the
upper and lower boundaries for highlights and underlines
we search left and then right to find the other boundaries
(pink lines) as with the underlines.

Figure 6 – Finding Regions for Highlights/Underlines

Margin bars
Margin bars are similar to underlines except that they can
be in the left margin, right margin or in a gutter between
areas of interest. Margin bars are generally drawn in a
vertically uniform area. We can quickly decide how wide
this area is and then determine whether the bar is closer to
the left or the right side of the white space. The bar will
generally be drawn nearer to the information being
highlighted. In figure 7, we see that the center of the ink
stroke (red line) is closer to the region on the right. This
boundary then becomes the left boundary of the region we
are finding and we continue searching to the right to find
the right boundary of the region. Then the top and bottom
boundaries of the region are found as before. A similar left
searching approach can be used if the ink is closer to the
material on the left.

Figure 7 – Finding Regions for Margin Bars

Document Analysis Algorithms
The process of finding white space, text space and images
in an array of pixels has long been studied as part of
document analysis [3]. There are a variety of techniques for
decomposing an image of a page into its components and to

discover the document structure. There are techniques using
projection profiles to recursively decompose a page. There
are “smearing” techniques the blur text into lines and
paragraphs. There are techniques for finding the baseline of
text[5] as well as techniques for identifying large
rectangular blocks of background.

We moved away from such techniques for several reasons.
The first is that we are annotating anything, not just
documents. The foreground/background approach of
document analysis does not always fit. Computer
applications regularly swap dark/light for foreground
background frequently in the same application. Web pages
and other applications introduce gradients, textures and
other non-uniform features into the background. In many
cases it is not background color that defines the best border.
When highlighting a region of spreadsheet cells it is the cell
separator lines in foreground color that provide the best
boundaries. The second reason was that by annotating
anything we could not make document-centric assumptions
about how to infer structure. Thirdly we wanted an
algorithm that would be interactively responsive. The goal
is to amplify the user’s intent rather than to understand the
document. The driving force is the user input rather than
structure inference. We wanted techniques that behaved
simply and predictably in a variety of situations with clear
mechanisms to override. We did not want users arguing
with the system about what had just been highlighted.
Lastly we wanted an efficient algorithm that would operate
at interactive speeds.

Region Association Algorithm Verification
In order to verify the accuracy of our stroke to region
association algorithm, we created a test suite to
interactively capture screen images, mark them with
highlight strokes, and manually specify the appropriate
region for each stroke. The manually specified regions were
then compared to regions that the algorithm found to
determine accuracy. Our test data included 46 images with
a total of 363 ink strokes. Our test images included screen
shots from office applications, document readers, web
pages, and others. In order to verify how well the continuity
images handle finding continuous runs in textures, 15 of the
included screen shots have moderate to highly textured
backgrounds. The ink strokes correspond to 1,452 region
boundaries, since there 4 boundaries per region.

The algorithm was able to correctly identify 1,374 (94.6%)
of the region boundaries to within a distance of 3 pixels.
The remaining 78 boundaries were checked manually to see
if they were still acceptable boundaries even though they
were not within the 3-pixel distance. We found that 62
(4.3%) of the boundaries were still acceptable. Even though
they were not within 3 pixels of the ideal boundary, the
calculated boundary was still acceptable. This is mainly due
to the fact that regions without well-defined boundaries
were being highlighted such as images with feathered
edges, and therefore didn’t have a well-defined boundary.

 171Volume 6, Issue 2

This leaves only 16 (1.1%) of the region boundaries as
incorrectly calculated by our algorithm. These can be easily
corrected since the user gets immediate feedback on the
region associated with each ink stroke.

WORKING WITH CRAYONS AND NOTES
Once notes are created they also must be browsed,
augmented, discarded and organized if they are to become
useful. The crayon manager, shown in figure 8, provides a
simple tree structure for organizing both crayons and their
notes.

Figure 8 – Crayon Manager

The crayon manager provides the interface for creating new
crayons, setting their ink parameters (color, thickness,
transparency), organizing them into a hierarchy and
providing labels for notes. The capture functions of the
crayon box are also possible in the crayon manager. The
crayon box is simply a very lightweight mechanism for
grabbing frequently used crayons. In essence the crayon
box is the “active cache” for the crayon manager.

Viewing Notes
The crayon manager is also the interface for locating and
viewing previously captured notes. The user can “open” a
crayon and see all of its notes. This task poses a challenge
when each note consists of a full screen shot. It is necessary
to summarize the images to their essentials so that many
notes can be shown at once and the user can browse
through them. Because we are working exclusively with
images we do not have the information model available in
systems like XLibris[19].

The key to our image summarization is the selected
rectangles associated with highlight strokes. We take these
rectangles and form a containment tree, as seen in figure 9.
One rectangle is contained by another if most of its space is
within the larger rectangle. Most rather than all is used to
allow for user and algorithm sloppiness.

Figure 9 – Containment Tree

We present all of the notes for a given crayon in a list. Each
note can be expanded or collapsed. For expanding and
collapsing notes in the list we use the following levels of
detail:

1. Note is represented by its label (which the user can
change)

2. All leaves of the containment tree. These leaf
images are presented in a flow sequence as shown
in figure 10. This level gives key phrases from the
full image as a means of understanding the note.
The highlight strokes themselves are not shown,
although comment notes are shown.

3. Direct parents of rectangles presented in step 2 or
previous stages of step 3, as shown in figure 12.
By organizing highlights, the user controls what
these levels of detail will be. The highlight strokes
and comments for any descendent rectangles in the
tree are shown, but the highlight stroke for the
displayed rectangle is not because it is visually
redundant. This view level actually represents
multiple levels of detail where the user can
dynamically expand and collapse individual nodes
of the containment tree.

4. The bounding box of all highlights and comments,
figure 13.

5. The bounding box of the active window at the time
of image capture.

6. The entire captured image.

 172

Any of steps 3 through 6 may be omitted if their bounding
rectangle is the same or a trivial extension of the lower
level.

Animation of Note View Transitions
All of the node expansion and collapsing operations are
animated to allow the user to easily follow highlighted
information as it repositions from one view to the next. If a
user expands Figure 10, the screen animates through Figure
11 to its final form in Figure 12. Without animation, the
expanding and collapsing of nodes make it difficult for the
user to follow highlighted segments. Since the layout of
images in the views use a flow sequence, view changes can
significantly change the position of information. The
animation allows the user to follow pertinent information
from one view to the next.

Animating the expanding/collapsing of the representation is
problematic because there is no inherent structure to the
underlying representation of the image itself. Before
expansion only portions of the image are shown and they
are not in their final positions. The problem is how to
present the new material as summary material animates to
its final location. Rather than a complex multi-fish-eye
warping of the underlying image, we simply fade in the
new material using transparency as shown in Figure 11. We
then linearly interpolate the previously visible items to their
final positions. For collapsing, the process reverses.

Figure 10 – Leaf Images

Figure 11 – Expanding Nodes

Figure 12 – Expanded to Containing Region

Figure 13 – Expanded to All Highlights and Comments

USEFULNESS OF SCREEN CRAYONS
The key advantage of Screen Crayons lies in its simplicity
and its universal applicability. A note is a screen image,
highlight ink, note ink and text notes. These basic
components can be used for virtually any purpose with at
most 10 minutes of training. The crayon manager adds
simple structure to the notes and the image summarization
makes notes manageable with very little effort on the part
of the user.

We can now revisit Fred the biologist. Creating a ToDo list
while reading email is as simple as creating a ToDo crayon
that is placed in the crayon box and always available.
Adding an item to the list consists of grabbing the ToDo
crayon, underlining the key part of the email message and
saving. All of the visual contextual information about the
item is implicitly saved and the highlighted information
provides a brief summary for the item in the ToDo list.

Handling notes from the email, web page, journal article
and budget spreadsheet are all trivial with no file format
compatibility problems. They are all just images and all are
managed in the same way. This includes Fred’s special
home-built gene sequencing program. Cross references
among disparate documents and applications are handled by
bringing all relevant items onto the screen, capturing a note,
highlighting the key points and then using digital ink
comments, circles and arrows to tie the points together for
future use. The fact that multiple programs are being
annotated is irrelevant to the image/note tools.

Creating notes is also spontaneous. When “off the wall”
items like the Nematode Songbook or travel information
appear, they can be rapidly captured under other crayon
topics for later use. The notes become an “instant memory”
tool. If no crayon exists for a topic the user can create a
“Look at Later” crayon for such items. Later the user can

 173Volume 6, Issue 2

review these notes, add more comments, move them to
other crayons, email them to friends or throw them away. In
the case of the Nematode Songbook, highlighting a song
title can jog one’s memory. However, because the entire
screen was captured, opening up the image further will
reveal the URL for that page as well as the scroll bar image
that shows how far into the document the song was found.
These are natural contextual cues that require no effort on
the part of the user.

6. Brush, A.J.B., Bargeron, D., Gupta, A., and Cadiz, J.J.
Robust Annotation Positioning in Digital Documents.
Proc CHI 2001, 285-292.

7. Budzik, J., and Hammond, K. J., User Interactions with
Everyday Applications as Context for Just-in-time
Information Access, Proc Intelligent User Interfaces
2000, 44-51.

8. Conklin, J., and Begeman, M. L. gIBIS: A Hypertext
Tool for Exploratory Policy Discussion. Proc CSCW
’88, 140-152. For extended tasks such as reading a thesis or reviewing a

paper a separate crayon for that document can be created.
This crayon might be placed under some global “Journal
Reviews” or “Pat’s Thesis” crayon for tidiness purposes but
the crayon for the specific review task can collect all of
those notes together. The image summarization capability
allows those notes to be reviewed, reordered and
reorganized using brief information with the expansion
capability allowing recovery of more detail.

9. E-Quill, http://www.rocketdownload.com/details/
HTML/5337.htm

10.Fails, J., and Olsen, D. A Design Tool for Camera-based
Interaction, Proc CHI 2003, 449-456.

11.Francik, E., Rapid, Integrated Design of a Multimedia
Communication System. In Human Computer Interface
Design, M. Rudisill, et al., (Eds.), Morgan Kaufman,
San Francisco, CA (1996). Managing little notes using full screen capture may seem

like a waste of disk space. We did an informal sample of
screen captures of 1600x1200 resolution screens of various
topics. We compressed the images in PNG format, which
preserves the exact image with all colors retained. PNG is
smaller and more accurate than JPEG for these types of
images. The average capture was about 300K in size. This
means that more than 3000 notes will fit in one gigabyte.
With a gigabyte of disk costing less than $15USD in 2003 it
seems that space is not an issue.

12.Golovchinsky, G. and Denoue, L., Moving Markup:
Repositioning Freeform Annotations, Proceedings of
ACM UIST 2002, (2002).

13.Gotz, M. G., Schlechtweg, S., and Strothotte, T. The
Intelligent Pen – Toward a Uniform Treatment of
Electronic Documents, International Symposium on
Smart Graphics, (June 2002).

14.Halasz, F. G. Reflections on NoteCards: Seven Issues
for the Next Generation of Hypermedia Systems.
CACM, Vol 31(7), (July 1988), 836-852. Our implementation of ScreenCrayons is written in C# and

runs under Windows.
15.Marshall, C.C., Halasz, F.G., Rogers, R.A., Janssen,

W.C., “Aquanet: A Hypertext Tool to Hold Your
Knowledge in Place”, Hypertext ’91, ACM, (1991).

REFERENCES

1. Adler, A., Gujar, A., Harrison, B. L., O’Hara, K., and

Sellen, A. A Diary Study of Work-Related Reading:
Design Implications for Digital Reading Devices. Proc
CHI ’98, 241-248.

16.Marshall, C.C., Price, M.N., Golovchinsky, G., and
Schilit, B.N., Designing e-books for Legal Research,
Proc International Conference on Digital Libraries
(2001), ACM, 41-48.

2. Alias, Sketchbook Pro, http://www.alias.com/eng/
products-services/sketchbook_pro/index.shtml

17.Nematode Songbook, http://mgd.nacse.org/hyperSQL/
squiggles/songs.html.

3. Baird, H.S., Background structure in document images.
International Journal of Pattern Recognition and
Artificial Intelligence, 8(5):1013-1030, 1994.

18.Olsen, D. R., Boyarski, D., Verratti, T., Phelps, M.,
Moffett, J. L., and Lo, E.L., Generalized Pointing:
Enabling Multiagent Interaction. Proc CHI 98, 526-533.

4. Bargeron, D., and Moscovich, T., Reflowing Digital Ink
Annotations, Proc CHI 2003, 385-393.

19.Schilit, B.N., Golovchinsky, G., and Price, M. N.
Beyond Paper: Supporting Active Reading with Free
Form Digital Ink Annotations. Proc CHI ’98, 249-256. 5. Breuel, T.M., Two Geometric Algorithms for Layout

Analysis, Proceedings of the 5th International
Workshop on Document Analysis Systems V, p.188-199,
2002.

20.Wilcox, L., Schilit, B., and Sawhney, N., Dynomite: A
Dynamically Organized Ink and Audio Notebook. Proc
CHI ’97, (1997).

 174

	ABSTRACT
	General Terms:
	Author Keywords
	ACM Classification Keywords

	INTRODUCTION
	An Example
	Prior Work
	The Pervasive Annotation Architecture Problem
	Requirements for an Annotation Tool

	CAPTURING ANNOTATIONS
	COMMENTS
	HIGHLIGHT/IMAGE REGION ASSOCIATION
	Continuity Images
	Stroke/Region Association
	Circles and scribbles
	Underlines
	Horizontal highlights
	Margin bars

	Document Analysis Algorithms
	Region Association Algorithm Verification

	WORKING WITH CRAYONS AND NOTES
	Viewing Notes
	Animation of Note View Transitions

	USEFULNESS OF SCREEN CRAYONS
	REFERENCES

