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Embarrassingly Parallel Computations

I A computation that can be divided into completely
independent parts, each of which can be executed on a
separate process(or) is called embarrassingly parallel.

I An embarrassingly parallel computation requires none or very
little communication.

I A nearly embarrassingly parallel is an embarrassingly parallel
computation that requires initial data to be distributed and
final results to be collected in some way. In between the
processes can execute their task without any communication.
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Embarrassingly Parallel Computation Examples

I Folding@home project: Protein folding software that can run
on any computer with each machine doing a small piece of the
work.

I SETI project (Search for Extra-Terrestrial Intelligence)
http://setiathome.ssl.berkeley.edu/.

I Generation of All Subsets.
I Generation of Pseudo-random numbers.
I Monte Carlo Simulations.
I Mandelbrot Sets (a.k.a. Fractals)
I and many more
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Generation of Pseudo-Random Numbers
Random number generators use a type of recurrence equation to generate a
“reproducible” sequence of numbers that “appear random.”

I By appear random we mean that they will pass statistical tests. By
“reproducible” means that we will get the same sequence of pseudo-random
numbers if we use the same starting number (the seed).

I The pseudo-random number generators are based on a linear congruential
recurrence of the following form, where s is the initial seed value and c is a
constant usually chosen based on its mathematical properties.

y0 = s

yi = ayi−1 + c ,1≤ i ≤ n−1
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Parallel Generation of Pseudo-Random Numbers

I Technique 1. One process can generate the pseudo-random
numbers and send to other processes that need the random
numbers. This is sequential. The advantage is that the parallel
program has the same sequence of pseudo-random numbers as
the sequential program would have, which is important for
verification and comparison of results.

I Technique 2. Use a separate pseudo-random number generator
on each process. Each process must use a different seed. The
choice of seeds used at each process is important. Simply
using the process id or time of the day can yield less than
desirable distributions. A better choice would be to use the
/dev/random device driver in Linux to get truly random seeds
based on hardware noise.

I Technique 3. Convert the linear congruential generator such
that each process only produces its share of random numbers.
This way we have parallel generation as well as reproducibility.
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Converting the Linear Congruential Recurrence
Assume: p processors, the pseudo-random numbers generated sequentially
are y0,y1, . . . ,yn−1.
The Idea: Instead of generating the next number from the previous random
number, can we jump by p steps to get to yi+p from yi?

Let us play a little bit with the recurrence.

y0 = s

y1 = ay0 + c = as + c

y2 = ay1 + c = a(as + c) + c = a2s +ac + c

y3 = ay2 + c = a(a2s +ac + c) + c = a3s +a2c +ac + c

. . .

yk = aks + (ak−1 +ak−2 + . . .+a1 +a0)c

yk = aky0 + (ak−1 +ak−2 + . . .+a1 +a0)c

yk+1 = aky1 + (ak−1 + . . .+a1 +a0)c

Now we can express yi+k in terms of yi as follows.

yk+i =

A
′︷︸︸︷

ak yi +

C
′︷ ︸︸ ︷

(ak−1 +ak−2 + . . .+a1 +a0)c = A
′
yi +C

′
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Converting the Linear Congruential Recurrence (contd)
We finally have a new recurrence that allows us to jump k steps at a time in the
recurrence. Setting k = p, for p processes, we obtain:

yi+p = A
′
yi +C

′

To run this in parallel, we need the following:

I We need to precompute the constants A
′
and C

′
.

I Using the serial recurrence, we need to generate yi on the ith process,
0≤ i ≤ p−1. These will serve as initial values for the processes.

I We need to make sure that each process terminates its sequence at the right
place.

Then each process can generate its share of random numbers independently. No
communication is required during the generation. Here is what the processes end
up generating:

Process P0: y0,yp,y2p, . . .
Process P1: y1,yp+1,y2p+1, . . .
Process P2: y2,yp+2,y2p+2, . . .
. . . . . .
Process Pp−1: yp−1,y2p−1,y3p−1, . . .
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Parallel Random Number Algorithm

An SPMD style pseudo-code for the parallel random number
generator.

prandom(i,n)
//generate n total pseudo-random numbers
//pseudo-code for the ith process, 0≤ i ≤ p−1
//serial recurrence yi = ayi−1 + c , y0 = s

1. compute yi using the serial recurrence
2. compute A

′
= ap

3. compute C
′
= (ap−1 +ap−2 + . . .+1)c

4. for (j=i; j<n-p; j=j+p)
5. yj+p = A

′
yj +C

′
;

6. process yj
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GNU Standard C Library: Random Number Generator

#include <stdlib.h>

long int random(void);
void srandom(unsigned int seed);
char *initstate(unsigned int seed, char *state, size_t n);
char *setstate(char *state);

I The GNU standard C library’s random() function uses a linear
congruential generator if less than 32 bytes of information is available
for storing the state and uses a lagged Fibonacci generator otherwise.

I The initstate() function allows a state array state to be initialized for
use by random(). The size of the state array is used by initstate() to
decide how sophisticated a random number generator it should use -
the larger the state array, the better the random numbers will be. The
seed is the seed for the initialization, which specifies a starting point
for the random number sequence, and provides for restarting at the
same point.
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PRAND: A Parallel Random Number Generator

I Suppose a serial process calls random() 50 times receiving the random
numbers....

SERIAL:
abcefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWX
Each process calls random() 10 times receiving the values...

process 0: abcdefghij
process 1: klmnopqrst
process 2: uvwxyzABCD
process 3: EFGHIJKLMN
process 4: OPQRSTUVWX

Leapfrog parallelization is not currently supported. Neither is independent
sequence parallelization.

I The principal function used for this is called unrankRand(). The function
unrankRand() permutes the state so that each process effectively starts
with its random() function such that the numbers it generates correspond to
its block of random numbers. It takes a parameter called stride that
represents how many random() calls from the current state the user want to
simulate. In other words the following code snippets are functionally
equivalent (although unrankRand() is faster)

ITERATIVE
for(i=0;i<1000000;i++)

random();
USING UNRANK
unrankRand(1000000);
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Using the PRAND library

I The header file is prand.h and the linker option is -lprand. The linker
option needs to be added to the Makefile file.

I To use the prand library in a parallel program we would use the following
format:

SERIAL:
srandom(SEED); //Consume the whole range of random numbers
for (i=0;i<n;i++) {

tmp = random();
...

PARALLEL: //Each process uses a fraction of the total range...
srandom(SEED)
unrankRand( myProcessID * (n/numberOfProcessors) );
for (i=0;i < (n/numberOfProcessors);i++) {

tmp = random();
...

The above code must be fixed if n does not divide evenly by the number of
processors.

I See example: MPI/random/random.c. The PRAND library was developed
by Jason Main, Ligia Nitu, Amit Jain and Lewis Hall.
(http://cs.boisestate.edu/˜amit/research/prand/)
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Monte Carlo Simulations

I A Monte Carlo simulation uses random numbers to model a
process. Monte Carlo simulations are named after the casinos
in Monte Carlo. Monte Carlo approach.

I Define a domain of possible inputs.
I Generate inputs randomly from the domain using a chosen

probability distribution.
I Perform a deterministic computation using the generated

inputs.
I Aggregate the results of the individual computations into the

final result.
I Monte Carlo methods are used in computational physics and

related fields, graphics, video games, architecture, design,
computer generated films, special effects in cinema, business,
economics and other fields. They are useful when computing
the exact result is infeasible.

I A large fraction of CPU time on some of the largest
supercomputers is spent running Monte Carlo simulations for
various problems.
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A Monte Carlo Algorithm for Computing Pi

Consider a square of side of length 2 in the x coordinate in the
range [-1,1] and y coordinate in the range [-1,1]. Now imagine a
circle with unit radius with center at (0,0) inside this square. The
area of this circle is πr2 = π. The area of the enclosing square is
2×2 = 4. Hence the ratio is π/4.

(1, −1)(−1.−1)

(−1, 1) (1,1)

(0,0)

The Monte Carlo method generates n points randomly inside the
square. Suppose a random point has coordinates (x ,y). Then this
points lies inside the circle is x2 + y2 < 1. The method keeps track
of how many points were inside the circle out of n total points.
This ratio equals π/4 in the limiting case and allows us to calculate
the value of π.
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Parallel Monte Carlo Algorithm for Computing π

estimate_pi(n, p, seed)
//p processes, process number id is 0≤ id ≤ p−1
//Assume that n is divisible by p
1. share = n/p
2. for (i=0; i<share; i++)
3. generate two random numbers x and y in the range [-1, 1]
4. if (x2 + y2) < 1
5. points = points + 1

6. if (id == 0)
7. Receive p−1 point counts from other processes
8. Add all the point counts
9. Calculate π = total point count/n ∗4
10. else
11. Send my point count to P0
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Generation of Combinatorial Objects

Generation of combinatorial objects in a specific ordering is useful
for testing.

I All subsets of a set (direct, graycode, lexicographic ordering).
I All permutations of a set.
I All k-subsets of an n-set.
I Composition of an integer n into k parts.
I Partition of an integer n
I and others
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Generation of All Subsets in Direct Ordering

I Let the elements be U = 1,2, . . . ,n.
I A subset S has rank m, where

m = a1 +a22+a322 + . . .+an2n−1

where ai = 1 if i ∈ S and 0 if i /∈ S . We have 2n possible
subsets.

I A simple algorithm to generate all subsets is to map the
subsets to the numbers 0 . . .2n−1 and convert the number to
binary and use that as a set representation.
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Example of direct ordering of subsets

Rank Binary Subset
0 0 0 0 {}
1 0 0 1 {3}
2 0 1 0 [2}
3 0 1 1 {2,3}
4 1 0 0 {1}
5 1 0 1 {1,3}
6 1 1 0 {1,2}
7 1 1 1 {1,2,3}
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Example of Lexicographic ordering of subsets

Rank Binary Subset
0 0 0 0 {}
1 1 0 0 {1}
2 0 1 0 [2}
3 0 0 1 {3}
4 1 1 0 {1,2}
5 1 0 1 {1,3}
6 0 1 1 {2,3}
7 1 1 1 {1,2,3}
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Example of Gray code ordering of subsets

I To create a n-bit Gray code, take a n−1 bit Gray code and
reflect it and then add 0 in front the codes on top and 1 in
front of the codes in the bottom.

I In a Gray code, only one bit changes as we go from one subset
to the next in the ordering. Similar to node numbering in
hypercubes.

Rank Binary Subset
0 0 0 0 {}
1 0 0 1 {3}
2 0 1 1 [2,3}
3 0 1 0 {2}
4 1 1 0 {1,2}
5 1 1 1 {1,2,3}
6 1 0 1 {1,3}
7 1 0 0 {1}
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Sequential Subset Algorithm (direct ordering)

1. for i ← 1 to n
2. do ai ← 0
3. k ← 0 // k is the cardinality

The above is for the first subset. The code below is for all later subsets.

1. i ← 1
2. while ai = 1
3. do i ← i + 1
4. k ← k - 1
5. ai ← 0
6. ai ← 1
7. k ← k + 1
8. if k = n
9. then exit

How long does it take to generate the next subset?

Amortized time to calculate the next subset is:
n

∑
i=1

i

2i
= 2− n+2

2n
= Θ(1)
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How to Parallelize Subset Generation?

We need to be able to unrank to a specified rank such that each
process can start generating its share of the sequence. Unranking a
value r is really just converting the number r into binary.

unrankSubset(r,n)
1. i ← 1
2. while (r> 0)
3. do ai ← r mod 2
4. r ← r/2 //integer division
5. i ← i + 1
6. for j ← i to n
7. do aj ← 0

Run-time: T ∗(n) = Θ(lgn)
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Parallel Generation of Subsets

Suppose we have p processes numbered 0 . . .p−1 and we want to generate
2n subsets. Then the ith process generates 2n/p subsets with the ranks:
i 2

n

p . . .(i +1)2n
p −1

[0 . . . 2n
p −1], [2n

p . . .22n
p −1], [22n

p . . .32n
p −1] . . . [ p

p−1
2n
p . . .2n−1]

P0 P1 P2 . . . Pp−1

Sequential time: T ∗(n) = Θ(2n)
Parallel time: Tp(n) = Θ(2n

p + lgn)

Speedup: Sp(n) = Θ( 2n
2n
p +lgn

) = Θ( p

1+ p lgn
2n

)
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Parallel Generation of Subsets

Suppose we have p processes numbered 0 . . .p−1 and we want to
generate 2n subsets. Then the ith process generates subsets with
the ranks:

i
2n

p
. . .(i +1)

2n

p
−1

parallelSubsets(i, n, p)
1. a[1..n] ← unrankSubset(i 2

n

p , n)
2. Generate the next 2n

p −1 subsets
3. if (me == 0)
4. for k ← 1 to p-1
5. do recv(&source, PANY )
6. else
7. send(&me, P0)
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Parallel Generation of Other Combinatorial Objects

I To generate subsets in graycode order or lexicographic order
requires an unrank function. This turns out to be more
complex.

I For other combinatorial objects, again we need to come up
with an unrank function. Each unrank function involves
understanding the properties of the object.

I We have created a CombAlgs library that solves this problem.
It was developed by undergraduate students Elizabeth Elzinga,
Jeff Shellman and graduate student Brad Seewald.
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Mandelbrot Set



26/42

Mandelbrot Set

I A Mandelbrot Set is a set of points on a complex plane that
are quasi stable (that is they will increase and decrease, but
not exceed some limit) when computed by iterating a function.

I A commonly used function for iterating over the points is:

zk+1 = z2
k + c

z0 = 0

where z = zreal + izimag and i =
√
−1.

I The complex number c is the position of the point in the
complex plane. The iterations are continued until the
magnitude of z , defined as | z |=

√
z2
real + z2

imag, is greater

than 2 or the number of iterations reaches some arbitrary limit.
I The graphic display is based on the number of iterations it

takes for each point to reach the limit. The complex plane of
interest is typically: [−2 : 2,−2 : 2].



26/42

Mandelbrot Set

I A Mandelbrot Set is a set of points on a complex plane that
are quasi stable (that is they will increase and decrease, but
not exceed some limit) when computed by iterating a function.

I A commonly used function for iterating over the points is:

zk+1 = z2
k + c

z0 = 0

where z = zreal + izimag and i =
√
−1.

I The complex number c is the position of the point in the
complex plane. The iterations are continued until the
magnitude of z , defined as | z |=

√
z2
real + z2

imag, is greater

than 2 or the number of iterations reaches some arbitrary limit.
I The graphic display is based on the number of iterations it

takes for each point to reach the limit. The complex plane of
interest is typically: [−2 : 2,−2 : 2].



26/42

Mandelbrot Set

I A Mandelbrot Set is a set of points on a complex plane that
are quasi stable (that is they will increase and decrease, but
not exceed some limit) when computed by iterating a function.

I A commonly used function for iterating over the points is:

zk+1 = z2
k + c

z0 = 0

where z = zreal + izimag and i =
√
−1.

I The complex number c is the position of the point in the
complex plane. The iterations are continued until the
magnitude of z , defined as | z |=

√
z2
real + z2

imag, is greater

than 2 or the number of iterations reaches some arbitrary limit.

I The graphic display is based on the number of iterations it
takes for each point to reach the limit. The complex plane of
interest is typically: [−2 : 2,−2 : 2].



26/42

Mandelbrot Set

I A Mandelbrot Set is a set of points on a complex plane that
are quasi stable (that is they will increase and decrease, but
not exceed some limit) when computed by iterating a function.

I A commonly used function for iterating over the points is:

zk+1 = z2
k + c

z0 = 0

where z = zreal + izimag and i =
√
−1.

I The complex number c is the position of the point in the
complex plane. The iterations are continued until the
magnitude of z , defined as | z |=

√
z2
real + z2

imag, is greater

than 2 or the number of iterations reaches some arbitrary limit.
I The graphic display is based on the number of iterations it

takes for each point to reach the limit. The complex plane of
interest is typically: [−2 : 2,−2 : 2].



27/42

Mandelbrot Set (contd.)

Expanding the function described on the previous frame, we have:

z2 = (zreal + izimag)2 = z2
real− z2

imag +2izrealzimag

Thus to compute the value of z for the next iteration, we have:

zreal = z2
real− z2

imag + creal
zimag = 2zrealzimag + cimag

I Let the complex plane of interest be [rmin:rmax, imin:imax].
I Suppose the display is of size disp_height × disp_width. The each

point (x ,y) needs to be scaled as follows:

c.real = rmin + x *

scale_real︷ ︸︸ ︷
(rmax - rmin)/disp_width;

c.imag = imin + y *

scale_imag︷ ︸︸ ︷
(imax - imin)/disp_height;
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Sequential Mandelbrot Set

Suppose we have a function cal_pixel(c), that returns the
number of iterations used starting from the point c in the complex
plane.

for(x=0; x<disp_width; x++)
for(y=0; y<disp_height; y++) {

c.real = rmin + ((float) x * scale_real)
c.imag = imin + ((float) y * scale_imag)
color = cal_pixel(c)
display(x,y,color)

}

Let m be the maximum number of iterations in cal_pixel().
Let n = disp_width×disp_height be the total number of points.
Then the sequential run time is T ∗(m,n) = O(mn) .
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Parallel Mandelbrot Set

I Making each task be computing one pixel would be too
fine-grained and lead to a lot of communication. So we will
count computing one row of the display as one task.

I Two ways of assigning tasks to solve the problem in parallel.
I Static task assignment. Each process does a fixed part of

the problem. Three different ways of assigning tasks statically:
I Divide by groups of rows (or columns)
I Round robin by rows (or columns)
I Checkerboard mapping

I Dynamic task assignment. A work-pool is maintained that
worker processes go to get more work. Each process may end
up doing different parts of the problem for different inputs or
different runs on the same input.

The above techniques are very general and apply to most parallel
programs.
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Static Task Assignment: By Rows

Pp−1

P0

1P

h

w

The display width = w , and the display height = h.
Each process handles at most dh/pe rows.
Total number of points = n = h×w .
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Static Task Assignment: By Rows (Pseudo-code)

mandelbrot(h,w,p,id)
//w = display width, h = display height
//p+1 processes, process number id is 0≤ id ≤ p
//arrays c[0 . . .w −1] and color[0 . . .w −1]

if (id == 0) { //Process 0 handles the display
for (i=0; i<h; i++) receive one row at a time

recv(c,color, Pany)
display(c,color)

} else { //the worker processes
id = id - 1 //renumber id to 0..p-1 from 1..p
share = dh/pe
start = id * share
end = (id + 1) * share - 1
if (id == p-1) end = h - 1 //boundary condition
for (y=start; y<=end; y++) {

for(x=0; x<w; x++) {
c[x].real = rmin + ((float) x * scale_real)
c[x].imag = imin + ((float) y * scale_imag)
color[x] = cal_pixel(c[x])

}
send(c, color, P0)

}
}



32/42

Static Task Assignment: Round Robin

P0

1P

P2h

w

Each process handles at most dh/pe rows.
Total number of points = n = h×w .
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Static Task Assignment: Round Robin (Pseudo-code)

mandelbrot(h,w,p,id)
//w = display width, h = display height
//p+1 processes, id = process number, 0≤ id ≤ p
//arrays c[0 . . .w −1] and color[0 . . .w −1]

if (id == 0) { //Process 0 handles the display
for (i=0; i<h; i++) receive one row at a time

recv(c,color, Pany)
display(c,color)

} else { //the worker processes
for (y=id-1; y<h; y=y+p) {

for(x=0; x<w; x++) {
c[x].real = rmin + ((float) x * scale_real)
c[x].imag = imin + ((float) y * scale_imag)
color[x] = cal_pixel(c[x])

}
send(c, color, P0)

}
}

→simpler code than task assignment by rows
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Static Task Assignment: Checkerboard

P0 1P

h

w

P

P P

P

P

P

P2

3 4 5

6 7 8

Assume that p = m×m is a square number.
Each process handles at most dn/pe points.
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Static Task Assignment: Checkerboard (Pseudo-code)
Column-major overall and also within each square.

mandelbrot(h,w,p,id)
//w = display width, h = display height
//p = m × m = number of processes, id = process number, 0≤ id ≤ p−1
//arrays c[0 . . .dw/me−1][0 . . .dh/me−1] and color[0 . . .dw/me−1][0 . . .dh/me−1]

if (id == 0) { //Process 0 handles the display
for (i=0; i<p; i++) receive one sub-square at a time

recv(c,color, Pany)
display(c,color)

} else { //the worker processes
id = id - 1 //renumber id to 0..p-1 from 1..p
m =

√
p; r = bid/mc; c = id % m;

my_h = dh/me; my_w = dw/me
startx = c * my_w; starty = r * my_h
endx = startx + my_w; if (c == m-1) endx = w
endy = starty + my_h; if (r == m-1) endy = h
for (y=starty; y<endy; y++) {

for(x=startx; x<endx; x++) {
c[x][y].real = rmin + ((float) x * scale_real)
c[x][y].imag = imin + ((float) y * scale_imag)
color[x][y] = cal_pixel(c[x][y])

}
}
send(c, color, P0)

}
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Static Task Assignment: Checkerboard version 2
Row-major overall and also within each square.

mandelbrot(h,w,p,id)
//w = display width, h = display height
//p = m × m = number of processes, id = process number, 0≤ id ≤ p−1
//arrays c[0 . . .dw/me−1][0 . . .dh/me−1] and color[0 . . .dw/me−1][0 . . .dh/me−1]

if (id == 0) { //Process 0 handles the display
for (i=0; i<p; i++) receive one sub-square at a time

recv(c,color, Pany)
display(c,color)

} else { //the worker processes
id = id - 1 //renumber id to 0..p-1 from 1..p
m =

√
p; r = bid/mc; c = id % m;

my_h = dh/me; my_w = dw/me
startx = r * my_h; starty = c * my_w
endx = startx + my_h; if (c == m-1) endx = h
endy = starty + my_w; if (r == m-1) endy = w
for (x=startx; x<endx; x++) {

for(y=starty; y<endy; y++) {
c[x][y].real = rmin + ((float) x * scale_real)
c[x][y].imag = imin + ((float) y * scale_imag)
color[x][y] = cal_pixel(c[x][y])

}
}
send(c, color, P0)

}
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Comparison of the three Static Task Assignments

I In the computation of the Mandelbrot set, some regions take
more iterations and others take fewer iterations in an
unpredictable fashion. With any of three task assignments
some processes may have a bigger load while others are idling.
This is an instance of the more general load balancing
problem.

I The round robin approach is likely to be the least unbalanced
of the three static task assignments.

I We can do better if we use a dynamic load balancing method:
the work-pool approach.
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Dynamic Task Assignment: The Work Pool

request task
Return results/

worker processes

Task
Task Task

Task

The Work Pool

row#

row#

row#

row#

row#

P0

2 p−1

p1

The work pool holds a collection of tasks to be performed. Processes are
supplied with tasks as soon as they finish previously assigned task. In more
complex work pool problems, processes may even generate new tasks to be
added to the work pool.

I task (for Mandelbrot set): one row to be calculated
I coordinator process (process 0): holds the work pool, which simply

consists of number of rows that still need to be done
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The Work Pool Pseudo-Code

mandelbrot(h, w, p, id)
// p+1 processes, numbered id=0, . . . ,p.

if (id == 0) {
count = 0
row = 0
for(k=1; k<=p; k++) {

send(&row, Pk , data)
count++; row++;

}
do {

recv(&id, &r, color, Pany, result)
count–
if (row < h) {

send(&row, Pid, data)
row++; count++

} else {
send(&row, Pid, termination)

}
display(r, color)

} while (count > 0)
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The Work Pool Pseudo-Code (contd.)

} else { // the worker processes
recv(&y, P0, ANYTAG, &source_tag)
while (source_tag == data) {

c.imag = imin + y * scale_imag
for (x=0; x<w; x++) {

c.real = rmin + x * scale_real
color[x] = cal_pixel(c)

}
send(&id, &y, color, P0, result)
recv(&y, P0, ANYTAG, &source_tag)

}
}
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Analysis of the Work-Pool Approach

I Let m be the maximum number of iterations in cal_pixel()
function. Then sequential time is T ∗(m,n) = O(mn) .

I Phase I. Tcomm(n) = p(tstartup + tdata).

I Phase II. Additional h−p values are sent to the worker processes.
Tcomm(n) = (h−p)(tstartup + tdata). Each worker process computes
≤ n/p points. Thus we have Tcomp(n)≤ (m×n)/p = O(mn/p).

I Phase III. A total of h rows are sent back, each w elements wide.

Tcomm(n) = h(tstartup +wtdata)

= htstartup +hwtdata = O(htstartup +ntdata)

I The overall parallel run time:

Tp(n) = O(htstartup + (n+h)tdata + mn
p )

I The speedup is:

Sp(n) = O

(
p

1+ hp
mn tstartup+

(n+h)p
mn tdata

)
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Further Examples of Embarrassingly Parallel Problems

I Serving static files on a webserver.

I Event simulation and reconstruction in particle physics.
I BLAST searches in bioinformatics for multiple queries.
I Large scale face recognition that involves comparing thousands of

arbitrary acquired faces with similarly large number of previously
stored faces.

I Computer simulations comparing many independent scenarios, such as
climate models, crystal growth and many others.

I Rendering of computer graphics. In ray tracing, each pixel may be
rendered independently. In computer animation, each frame may be
rendered independently.

I Distributed relational database queries using distributed set processing
I MapReduce programs on massive data sets.
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