Homework 1 (70 points), Spring 2004

Q1: Exercise 2.1-2 (10 points)

Rewrite the Insertion-Sort procedure to sort into nonincreasing instead of nondecreasing order.

Insertion-Sort(A)
1. for j <-- 2 to length[A]
2. do key <-- A[j]
3. // Insert A[j] into the sorted sequence A[1..j-1]
4. i <-- j-1
5. while i>0 and A[i]<key
7. i <-- i-1
8. A[i+1] <-- key

Q2: Exercise 2.2-1 (10 points)

Express the function $n^3/1000 - 100n^2 - 100n + 3$ in terms of Θ-notation.

- An easy way to determine the Θ-notation for a function – pick the most dominant term without considering its coefficient. Thus, $n^3/1000 - 100n^2 - 100n + 3 = \Theta(n^3)$

Q3: Exercise 2.3-2 (10 points)

Rewrite the Merge procedure so that it does not use sentinels, instead stopping once either array L or R has had all its elements copied back to A and then copying the remainder of the other array back into A.

- Pseudocode for Merger sort without sentinels.

Merge(A, p, q, r)
1. n1 <-- q - p + 1
2. n2 <-- r - q
3. create arrays L[1..n1] and R[1..n2]
4. for i <-- 1 to n1
5. do L[i] <-- A[p+i-1]
6. for j <-- 1 to n2
7. do R[j] <-- A[q+j]
8. i <-- 1
9. j <-- 1
10. for k <-- p to r
11. do if (i > n1)
12. then A[k] <-- R[j]
13. j <-- j+1
14. else if (j > n2)
15. then A[k] <-- L[i]
16. i <-- i+1
17. else if (L[i] <= R[j])
18. then A[k] <-- L[i]
19. i <-- i+1
20. else A[k] <-- R[j]
21. j <-- j+1
Q4: Exercise 2.3-4 (10 points)

Insertion sort can be expressed as a recursive procedure as follows. In order to sort \(A[1..n] \), we recursively sort \(A[1..n-1] \) and then insert \(A[n] \) into the sorted array \(A[1..n-1] \). Write a recurrence for the running time of this recursive version of insertion sort.

- **Divide:** Divide the problem into one smaller subproblem with size \(n-1 \).
- **Conquer:** Conquer the subproblem by solving it recursively. After this step, we have a sorted subarray with size \(n-1 \).
- **Combine:** Insert the element not in the sorted subarray into the sorted subarray.

Therefore, the recurrence for this version of Insertion-Sort is as follows.

\[
T(n) = \begin{cases}
\Theta(1) & \text{if } n = 1 \\
T(n-1) + O(n) & \text{if } n > 1
\end{cases}
\]

Q5: Problem 2-1 parts a, b and c (10 points)

Insertion sort on small arrays in merge sort

Although merge sort runs in \(\Theta(n \lg n) \) worst-case time and insertion sort runs in \(\Theta(n^2) \) worst-case time, the constant factors in insertion sort make it faster for small \(n \). Thus, it makes sense to use insertion sort within merge sort when subproblems become sufficiently small. Consider a modification for merge sort in which \(n/k \) sublists of length \(k \) are sorted using insertion sort and then merged using the standard merging mechanism, where \(k \) is a value to be determined.

a. Show that the \(n/k \) sublists, each of length \(k \), can be sorted by insertion sort in \(\Theta(nk) \) worst-case time.

 - Each sublist with length \(k \) takes \(\Theta(k^2) \) worst-case time using Insertion-Sort. To sort \(n/k \) such sublists, it takes \(n/k \times \Theta(k^2) = \Theta(nk) \) worst-case time.

b. Show that the sublists can be merged in \(\Theta(n \lg(n/k)) \) worst-case time.

 - Merging \(n/k \) sublists into \(n/2k \) sublists takes \(\Theta(n) \) worst-case time.
 - Merging \(n/2k \) sublists into \(n/4k \) sublists takes \(\Theta(n) \) worst-case time
 -
 - Merging 2 sublists into one list takes \(\Theta(n) \) worst-case time
 - We have \(\lg(n/k) \) such merges, so merging \(n/k \) sublists into one list takes \(\Theta(n \lg(n/k)) \) worst-case time.

c. Given that the modified algorithm runs in \(\Theta(nk + n \lg(n/k)) \) worst-case time, what is the largest asymptotic (\(\Theta \)-notation) value of \(k \) as a function of \(n \) for which the modified algorithm has the same asymptotic running time as standard merge sort?

 - In order for \(\Theta(nk + n \lg(n/k)) = \Theta(n \lg n) \), the largest asymptotic value for \(k \) is \(\Theta(\lg n) \).

Q6: (10 points)

Please use the basic definition of \(\Theta \)-notation to prove \(n^2/3 - 12 = \Theta(n^2) \).
• We would like to find positive constants \(c_1, c_2 \) and \(n_0 \), such that

\[
0 \leq c_1 n^2 \leq n^2/3 - 12 \leq c_2 n^2, \forall n \geq n_0
\]

Such constants do exist, for example, \(c_1 = 1/9, c_2 = 1/3 \) and \(n_0 = 9 \)
Therefore, \(n^2/3 - 12 = \Theta(n^2) \)

Q7: Exercise 3.1-4 (10 points)

Is \(2^{n+1} = O(2^n) \)? Is \(2^{2n} = O(2^n) \)?

• We can choose \(c = 2 \) and \(n_0 = 0 \), such that \(0 \leq 2^{n+1} \leq c \times 2^n \) for all \(n \geq n_0 \). By definition, \(2^{n+1} = O(2^n) \).

• We can not find any \(c \) and \(n_0 \), such that \(0 \leq 2^{2n} = 4^n \leq c \times 2^n \) for all \(n \geq n_0 \). Therefore, \(2^{2n} \neq O(2^n) \).