
Introduction to HashTables

Steve Cutchin

Boise State University

February 24, 2021

Steve Cutchin Introduction to Hashtables

Hash Tables: What Problem Do They Solve

What Problem Do They Solve?
Why not use arrays for everything?

1 Arrays can be very wasteful:
Example Social Security Numbers
999-99-9999 1 billion entries
only 319 million people in US as of 2014.
Array would be 68 % empty.

2 Non-numeric objects:
Store strings in the array. ’LLAPLN19312015’
Need to map string to a numeric index.
This map is very similar to a hash function.

Steve Cutchin Introduction to Hashtables

Hash Tables: The Basics

Hash Table
A[] Array to hold keys,values.

insert(A, key, value); Save key and value in A. O(1)
int findA, key); Find the key. O(1)
delete(A,key); Delete Key/Value. O(1)

int hash(key); Compute Hash Value. O(1)

Steve Cutchin Introduction to Hashtables

Hash Function

Two Basic Hash Approaches

division h(k) = k mod m. Use the remainder of k/m. m
comes from the size of what object?

multiplication h(k) = bm(kA− bkAc)c where 0 < A < 1. This
equation will range from zero to m.

Steve Cutchin Introduction to Hashtables

Hash Function

What makes a good hash function:

Uniform Hashing Keys are equally like to go to any hash value.

Fully Utilize Can generate a hash value for any table entry.

Fast Hash function computes in O(1)

Minimizes Collisions For a set of keys, keeps collisions to a
minimum.

Steve Cutchin Introduction to Hashtables

Hash Tables

Collisions Since the hash function is applied to unbounded
keys there are going to be keys that generate the
same hash value. These are called Collisions.

*It is not the size of the hash table that causes the collision but
the nature of the hash function.

Steve Cutchin Introduction to Hashtables

Hash Tables

Solving Collisions: There are two approaches:
1 Separate Chaining: store the keys in a linked list anchored

at the hash value.
2 Open Addressing: rehash repeatedly to find an empty

space in the hash table.

Steve Cutchin Introduction to Hashtables

Separate Chaining

Separate Chaining
Hash = k mod 7
Keys = [7, 0, 56, 2,51,49,5,54, 12, 26, 9, 19, 16]

H=0

H=1

H=2

H=3

H=4

H=5

H=6

49 56 0 7

16 9 51 2

19 26 12 54 5

Steve Cutchin Introduction to Hashtables

Separate Chaining

Separate Chaining: set method O(1)

1 i n t i n s e r t (A, key , v a l u e)
2 h i = hash (key) ; // get the hash v a l u e .
3 l i s t p = A[h i] ; // get l i s t l i n k e d l i s t
4 l i s t p . i n s e r t (key , v a l u e) ; // i n s e r t a t f r o n t .
5 re tu rn 1 ; // a lways room with s e p a r a t e c h a i n i n g .

Separate Chaining: get method O(n)

1 i n t f i n d (A, key)
2 h i = hash (key) ; // get the hash v a l u e .
3 l i s t p = A[h i] ; // get l i s t l i n k e d l i s t
4 do { i f (l l i s t p . key == key) re tu rn l i s t p . v a l u e ;

l i s t p=l i s t p . nex t ; } whi le (l i s t) ;
5 re tu rn ERROR; // key not p r e s e n t

Separate Chaining: delete method O(n)

1 de le te (A, key)
2 h i = hash (key) ; // get the hash v a l u e .
3 l i s t p = A[h i] ; // get l i s t l i n k e d l i s t
4 l i s t p . de le te (key) ; // assume b u i l t i n method

Steve Cutchin Introduction to Hashtables

Hash Tables

Open Addressing

If their is a collision we rehash the key to generate a new key.

How many times do we rehash until we give up?

Hash functions with rehashing

linear We use the hash function h(k) = (h′(k) + i)
mod m, specific case h(k) = (k mod 7 + i) mod m.

quadratic We use the hash function
h(k) = (h′(k) + c1 ∗ i + c2 ∗ i2) mod m
h(k) = (k mod 7 + c1 ∗ i + c2 ∗ i2) mod 7, first
rehash matches linear when c1 = c2 = 1/2.

double We use the hash function h(k) = (h1(k) + i ∗ h2(k))
mod m, h(k) = (k mod 7 + i ∗ (k mod 2)) mod 7

General Linear and Quadratic are specializations of double
hashing, linear h2(k) = 1, quadratic
i ∗ h2(k) = c1 ∗ i + c2 ∗ i2.

Steve Cutchin Introduction to Hashtables

Open Addressing

Open Addressing: insert method O(m)

1 i n t i n s e r t (A, key , v a l u e)
2 i = 0 ; h i = key mod A. l e n g t h ; // get the hash v a l u e
3 whi le (i < A. l e n g t h && A[h i] != EMPTY)
4 {
5 i = i + 1 ;
6 h i = (key mod A. l e n g t h + i) mod A. l e n g t h) ;
7 }
8 i f (i >= A. l e n g t h) re tu rn FALSE ; // Table i s f u l l .
9 A[h i] = va l u e ; // assumes f u l l y u t i l i z e d .

10 re tu rn TRUE;

Steve Cutchin Introduction to Hashtables

Open Addressing

1 i n t f i n d (A, key)
2 i = 0 ; h i = hash (key) ; // get the hash v a l u e .
3 whi le (i < A. l e n g t h && A[h i] != key && A[h i] !=

EMPTY) { i = i + 1 ; h i = (key mod A. l e n g t h + i)
mod A. l e n g t h) ;

4 i f (i >= A. l e n g t h) re tu rn FALSE ; // no key
5 i f (A[h i] == EMPTY) re tu rn FALSE ; // no key
6 re tu rn A[h i] ; // found the key

1 de le te (A, key)
2 i = 0 ;
3 h i = hash (key) ; // get the hash v a l u e .
4 whi le (i < A. l e n g t h && A[h i] != EMPTY && A[h i] !=

key) { i = i + 1 ; h i = (key mod A. l e n g t h + i)
mod A. l e n g t h) ;

5 i f (i >= A. l e n g t h) re tu rn ; // no such key − t a b l e
f u l l

6 i f (A[h i] == EMPTY) re tu rn ; // no such key
7 A[h i] = EMPTY; // what i s wrong wi th t h i s ?

Steve Cutchin Introduction to Hashtables

Hash Tables

Key Issues in Hash Table Performance

Uniform Hashing For any random key the probability of hashing to
any specific location in the table is equal to 1/|A|.
Or alternatively, the probability for table locations are
the same. This is known as uniform hashing.

Fully Utilize For Open Addressing, a rehashing scheme is said to
fully utilize the table if given all entries in the table
are full, for some finite number of steps the rehashing
scheme will have inspected every location in the
table.

Load Factor The Load Factor for a hash table is equal to n/m
where n is the number of keys in the table and m is
the size of the table.

Steve Cutchin Introduction to Hashtables

Hash Tables

What makes a good Uniform Hashing function?
Let’s look at the mod function. For example k mod 7. For any
series of numbers, say 0 through 21, it will cycle through the
numbers 0 through 6 exactly 3 times. What is the probability of a
random key falling at given index i:

Given a key k what is the probability that it k mod 7 = i for
a fixed i?

How many numbers in 0 to 21 mod to i? 3.

What is the probability that k is one of those numbers? 3/21
= 1/7.

So the probability that k fall at any specific index i is 1/7.

So the mod function provides uniform hashing.

Steve Cutchin Introduction to Hashtables

Full Utilization

Fully Utilize a table: definition: - example problem showing failure.

Hash Functions:

Linear: h(k) = (k mod 8 + i) mod 8

Quad: h(k) = (k mod 8 + c1 ∗ i + c2 ∗ i2)
mod 8, c1 = c2 = 1/2

Double: h(k) = (k mod 8 + i ∗ (k mod 7)) mod 8

Steve Cutchin Introduction to Hashtables

Load Factor

Load Factor is the ratio of the number of elements to the size of
the table: Load Factor =

α =
n

m

Bounds for Load Factor

Separate Chaining In separate chaining the Load Factor is
unbounded because the table can hold more list
elements than indices in the table.

Open Addressing In Open Addressing the Load Factor is bounded
to the range 0 <= α <= 1.

Good Load Factors What are good values for load factors for each
method?

Steve Cutchin Introduction to Hashtables

Load Factor

Steve Cutchin Introduction to Hashtables

Load Factor

Steve Cutchin Introduction to Hashtables

Expected Probes

Expected Probes for an Unsuccessful Search using linear probing.

HT 8 9 15 17 18

COUNT 3 2 1 2 1 1 3 2 1 1

Expected Probes =
|A|∑
i=1

p(i)

|A|
Sum = 3 + 2 + 1 + 2 + 1 + 1 + 3 + 2 + 1 + 1 = 17, |A| = 10

Expected Probes = 17/10 = 1.7. Load Factor = 5/10 = 0.5.
Challenge Problem: How to calculate probes in a successful search?

Steve Cutchin Introduction to Hashtables

Expected Number of Probes

Expected Number of Probes for Open Addressing

A probe is any inspection of the table. Minimum probe for
insert, find, or delete is 1 probe.

For Unsuccessful search expected number of probes is at most
1

(1−α) where α = n/m < 1.

Inserting an element takes at most 1
(1−α) where α = n/m < 1

on average.

The number of probes in a successful search is at most
1
α ln 1

(1−α) where α = n/m < 1.

Steve Cutchin Introduction to Hashtables

Cuckoo Hashing

A type of Open Addressing.

Cuckoo Hashing Uses two (or more) hash functions. If the first
hash fails, the second is used. If the second hash
fails, the old key/value in the Table is replaced with
the new one and the old value is rehashed using
alternating rehashing, swapping old values as they
occur. This technique leads to very space efficient
tables and very rapid table lookups. What
fundamental computer science principal is exhibited
here?

Steve Cutchin Introduction to Hashtables

