Order Statistics Review

Lecture 8 CS321

Todays Lecture

- Assignment 2 is due Tuesday Feb 17th 11:59pm
- HW1 out on Monday Feb 15th.
- Monday 15th is President's Day: no class.

Sorting Compared

Method/Structure	Space	Complexity	Time
Insertion Sort/Array	O(n)	Simple	O(n ²)
Quicksort/Array	O(2*n)	Complex	O(n ²)
Heapsort/Tree	O(n)	Complex	O(n*log(n))
Mergesort/Array	O(2*n)	Simple	O(n*log(n))
Counting Sort/Array	O(2*n)	Simple	O(3*n)

Big O Notation

- f(n) = O(n) means f(n) <= c*n for some c > 0
- $f(n) = \Omega(n)$ means $f(n) \ge c^*n$ for some $c \ge 0$.
- $f(n) = \Theta(n)$ means f(n) = O(n) and $f(n) = \Omega(n)$
- Sources:
 - Introduction to Algorithms Chapter 2
 - http://staff.ustc.edu.cn/~csli/graduate/algorithms /book6/chap02.htm
 - Not covered in OpenDataStructures: need CLRS

Challenge Question

- For breakout groups:
 - $Is 2^{n+1} = O(2^n)$
 - $Is 2^{2n} = O(2^n)$

Calculate the O for this function

• $f(n) = \Theta(n)$

What does this mean?

The running time of f(n) is at least $O(n^3)$.

$$\Theta(n) + \Omega(n) = \Theta(n)$$

$$f(n) = O(g(n)) \text{ implies } g(n) = O(f(n))$$

Order the following

 $\log_2(n!), 4^n, \log_2 n, \log_2 n^n, \log_{10} n, \log_{10} n^{10}, \sqrt{n}, 5^{n/2}, n!$

Bolt Sort – AKA Quicksort

- Problem: Sorting a set of Nuts and Bolts
- You have N nuts, and N bolts.
- For every bolt there is a matching nut.
- You can test a bolt against a nut.
- You can not compare a bolt to a bolt.
- You can not compare a nut to a nut.
- What is an efficient way to match all bolts and nuts?