Priority Queues

CS 321
Feb 03 2021



Priority Queues

* A priority queue is an ordered queue such that
the highest priority entry is always at the front of
the Queue.

— Insert(S,x) — insert x into S, x is our ‘key’, ‘key’=priority.
— Maximum(S) — return maximum key in S.

— Extract-Max(S) — remove and return largest key.

— Increase-Key(S,x,k) increase key x to k.

* |n a full implementation x could be a structure
x={key, element}.

* What might be a good data structure for this?



Max-Priority-Queue

* A Max-Heap seems an excellent choice for our
Priority Queue since it keeps largest item at
the root.



Heap-Maximum(A)

 Return A[1];



Heap-Extract-Max(A)

Heap-Extract-Max (A)

1. if heap-size[A] < 1

2. then error -- heap underflow
3. max <-- A[1]
4. A[1] <-—- Alheap-size[A]]

o

. heap-size[A]--

N

. Max-Heapify(A, 1)

7. return max



Heap-Increase-Key(A, i, key)

Heap-Increase-Key(A, i, key)
1. if key < A[i]

2 then error -- new key must be larger than current key

3. A[i] <-- key

4. while i > 1 and A[Parent(i)] < A[i] // This procedure takes 0(log n)
5 do exchange A[i] <--> A[Parent(i)]

6 i <-- Parent(i)



Max-Heap-Insert(A, key)

Max-Heap-Insert (A, key)
1. heap-size[A]++
2. Alheap-size[A]] <-- negative infinity

3. Heap-Increase-Key(A, heap-size[A], key)



Summarizing Table

Wethod WorstCase |Bescae

Maximum 0O(1) 0O(1)
Max-Heap-Insert O(logn) = key at leaf. O(1) = key at root.
Heap-Increase-Key O(logn) = key at leaf. O(1) = key at root.

Extract-Max O(1) 0O(1)



Exercise 6.5-7

* How could we implement a first in, first out
Queue with our Max-Priority-Queue?

* How could we implement a stack with our
Max-Priority-Queue?

* Hint: answer is in proper selection of the keys.



Alternative Sort

Have a list of numbers limited in range to
between 0 and 2716

Numbers could be in any order.
Input size could be any size (very large).
How could we sort in ©(n) time?



	Priority Queues
	Priority Queues
	Max-Priority-Queue
	Heap-Maximum(A)
	Heap-Extract-Max(A)
	Heap-Increase-Key(A, i, key)
	Max-Heap-Insert(A, key)
	Summarizing Table
	Exercise 6.5-7
	Alternative Sort

