
Priority Queues

CS 321
Feb 03 2021



Priority Queues

• A priority queue is an ordered queue such that 
the highest priority entry is always at the front of 
the Queue.
– Insert(S,x) – insert x into S, x is our ‘key’, ‘key’=priority.
– Maximum(S) – return maximum key in S.
– Extract-Max(S) – remove and return largest key.
– Increase-Key(S,x,k) increase key x to k.

• In a full implementation x could be a structure 
x={key, element}.

• What might be a good data structure for this?



Max-Priority-Queue

• A Max-Heap seems an excellent choice for our 
Priority Queue since it keeps largest item at 
the root.



Heap-Maximum(A)

• Return A[1];



Heap-Extract-Max(A)



Heap-Increase-Key(A, i, key)



Max-Heap-Insert(A, key)



Summarizing Table
Method Worst Case Best Case

Maximum O(1) O(1)

Max-Heap-Insert O(logn) = key at leaf. O(1) = key at root.

Heap-Increase-Key O(logn) = key at leaf. O(1) = key at root.

Extract-Max O(1) O(1)



Exercise 6.5-7

• How could we implement a first in, first out 
Queue with our Max-Priority-Queue?

• How could we implement a stack with our 
Max-Priority-Queue?

• Hint: answer is in proper selection of the keys.



Alternative Sort

• Have a list of numbers limited in range to 
between 0 and 2^16

• Numbers could be in any order.
• Input size could be any size (very large).
• How could we sort in Θ(n) time?


	Priority Queues
	Priority Queues
	Max-Priority-Queue
	Heap-Maximum(A)
	Heap-Extract-Max(A)
	Heap-Increase-Key(A, i, key)
	Max-Heap-Insert(A, key)
	Summarizing Table
	Exercise 6.5-7
	Alternative Sort

