CS321 Spring 2021

Lecture 4
Jan 25 2021

Admin

e Al Should be turned in.

In Class Assighment

* Use HeapSort to sort:

° [112131415)6171819]

— You have to sort it, even though it is in the right
order.

Basic Computing Problem

* Sort a list of numbers in the quickest time
* A=[1,9,2,8,4,5,0,3,6,7]
Fori=0to 9:
forj=ito9:
if (Alj] <Ali]) swap(A,i,j);

What is the runtime of this?

Answer O(n”2)

Very simple sorting algorithm takes O(n”2).

Can we do better?

If the world were magic what is the best we
could do?

— O(n)
So should be able to do better than O(n”2)

Heapsort

A sorting algorithm that uses a specific type of
data structure: Max-Heap

Has a worst case and best case performance
of O(n*log(n)).

Pointl: Choice of data structure critical for
algorithm performance.

Point2: Additional example of Big-O analysis.

Components.

Input: list of N numbers stored in an array. Do
not know the order of the numbers.

Desired Output: the numbers sorted smallest
to largest.

Data structure: Max-Heap
Algorithm: Heapsort.

Max-Heap

— Definition:
To be a binary max-heap, two conditions need to be satisfied.
1. It should be a complete binary tree (all levels, except the last level, must be
full and all nodes in the last level need to be as far left as possible).

2. The value of a node should be greater than or equal to its children.

Ex: 91 52 91
/ N\ /o \ /\
77 46 77T 46 77 46
/ 0\ \ /N /N
69 3 11 69 3 11 69 3 11

not a max-heap not a max-heap a max-—heap

Max-Heap in an Array

Array representation for a max-heap:

Assume array index starts at 1. Let heap-size[A] stands for the number of ele-
ments in the heap stored in the array A.

That is, A[l...heap-size[Al] stores the heap and the root of the heap is stored in
All].

The parent-child relationship between two nodes are represented by the follow-

ing formulas,

Given a node at array index i, Parent(i) — [i/2]
Left(i) — 2i
Right(i) = 2i + 1

The example max-heap in this page can be represented in an array as

91 | 77 [46 | 69 | 3 | 11

Heapsort

Heapsort (A)
1. Build-Max-Heap(A)

2. for i <-- length[A] downto 2

3. do exchange A[1] <--> A[i]
4, heap-size--
5. Max-Heapify (A, 1)

— Running time analysis of Heapsort(A):
Heapsort call Build-Max-Heap(A) once and call Max-Heapify(A) n — 1 times.

Thus, the running time is O(nlogn).

Build a Max-Heap

Build-Max-Heap(A)
1. heap-size <-- length[A]

2. for i <-- length[A]/2 // integer division

3. do Max-Heapify(A, i)
Ex: 46 46 46
/ \ / \ / \
11 7 —=> 11 91 --> 69 91
/ N\ / / N\ / /o /

Maintain Heap Method

Max-Heapify(A, i) // heapification downward

Pre-condition: Both the left and right subtrees of node i1 are max-heaps
and i is less than or equal to heap-size[A]

Post-condition: The subtree rooted at node 1 is a max-heap

1. 1 <-- Left(i) 2i

2. r <-- Right(i) 2i+1

3. largest <-- 1

4, if 1 <= heap-size[A] and A[1] > A[i]

5. then largest <-- 1

6. if r <= heap-size[A] and A[r] > A[largest]

7. then largest <-- r

8. 1f largest =1

9. then exchange A[i] <--> A[largest]

10. Max-Heapify (A, largest)

Ex:

26

52
7\

/

7

29

Maintain Heap Example

38
/ \
22 65
\ / \ --> call Max-Heapify(A, 2) --> /
65 12 9 52
/ /\
31 26 7

\

2

38

22

/A
31 12

/
9

9

Heap Properties

— The height h of a heap with n nodes: h = 6(logn).
Since) with height h will have the minimum and maximum of nodes as

[ollows.
Minimmm of = 14+ 24924, + 91129
Maximum of n = 142424, 420 = -

From the above two equations, we can derive b = 8(logn).

Run time Max Heapify Ali]

Let n be the number of nodes in the subtree rooted at node 1.

Step 1 to Step 9 take O(1) time.

Step 10 is a subproblem to Max-Heapify node ¢'s subtree (either left or right
subtree).

Since the size of a subtree of node 7 is at most 2n/3 (occurs when the last row of

the tree is half full). Check the figure below.

X
/ \ There are k+1 nodes in the last level
X X Thus, n=1+k + k + k +1 = 3kt+2
/\ / \ This implies k = (n-2)/3 and
/ k\ / kA The size of the left subtree is 2k+1 = (2n-1)/3
/o N \ Taking out the constant, it is about 2n/3

XXXXXXXXX 0(9) + O(max-heapify (2ﬂ/3))

Runtime Max Heapify

0O(9) + O(max-heapify (2n/3))
0O(9) + O(9) + O(max-heapify (4n/9))
0O(9) + 0O(9) + O(9) + O(max-heapify(8n/27))

So, how many times can we divide N by 2: N = 2", h = log(N).

So, run time for Max Heapify = log(N)*0O(9) = O(logN)

	CS321 Spring 2021
	Admin
	In Class Assignment
	Basic Computing Problem
	Answer O(n^2)
	Heapsort
	Components.
	Max-Heap
	Max-Heap in an Array
	Heapsort
	Build a Max-Heap
	Maintain Heap Method
	Maintain Heap Example
	Heap Properties
	Run time Max Heapify A[i]
	Runtime Max Heapify

