
CS321 Spring 2021

Lecture 3
Jan 20 2021

Admin

• A1 Due Sat Jan 23rd – 11:59PM
• Zoom recordings are up on blackboard.
• Slides will be cross-posted on blackboard and

web site.
• Web:

https://cs.boisestate.edu/~scutchin/cs321

Word In Cache?
• inCache(w)
• {

– Increment cache 1 reference count.
– Search Linked List cache1 for w // Big O time?
– If w in cache1 {increment cache1.hit, Move item to front of

list. return true}
– Else if no cache2 return false.
– Increment cache2 reference
– Search linked list cache2 for w // Big O time?
– If w in cache2 {increment cache2.hit, move to front of

Cache 2 and add to cache 1, return true}
• }

addCacheWord

• addWord(w) // add word to cache.
• // not counting this as a cache reference, why?
• If(cache1 full){ remove last item in list}.//cost?
• Add w to front of cache1.
• If (cache2) {

– If (cache2 full) { remove last item in list // cost?
– Add w to front of cache2

• }

What Causes Cache1 to be different from Cache2?

Basic Computing Problem

• Sort a list of numbers in the quickest time
• A=[1,9,2,8,4,5,0,3,6,7]
For i = 0 to 9:

for j = i to 9:
if (A[j] < A[i]) swap(A,i,j);

What is the runtime of this?

Answer O(n^2)

• Very simple sorting algorithm takes O(n^2).

• Can we do better?
• If the world were magic what is the best we

could do?
– O(n)

• So should be able to do better than O(n^2)

Heapsort

• A sorting algorithm that uses a specific type of
data structure: Max-Heap

• Has a worst case and best case performance
of Θ(n*log(n)).

• Point1: Choice of data structure critical for
algorithm performance.

• Point2: Additional example of Big-O analysis.

Components.

• Input: list of N numbers stored in an array. Do
not know the order of the numbers.

• Desired Output: the numbers sorted smallest
to largest.

• Data structure: Max-Heap
• Algorithm: Heapsort.

Max-Heap

Max-Heap in an Array

Heapsort

Build a Max-Heap

Maintain Heap Method

2i
2i + 1

Maintain Heap Example

Heap Properties

Run time Max Heapify A[i]

O(9) + O(max-heapify (2n/3))

Runtime Max Heapify
O(9) + O(max-heapify (2n/3))

O(9) + O(9) + O(max-heapify (4n/9))

O(9) + O(9) + O(9) + O(max-heapify(8n/27))

So, how many times can we divide N by 2: N = 2h , h = log(N).

So, run time for Max Heapify = log(N)*O(9) = O(logN)

	CS321 Spring 2021
	Admin
	Word In Cache?
	addCacheWord
	Basic Computing Problem
	Answer O(n^2)
	Heapsort
	Components.
	Max-Heap
	Max-Heap in an Array
	Heapsort
	Build a Max-Heap
	Maintain Heap Method
	Maintain Heap Example
	Heap Properties
	Run time Max Heapify A[i]
	Runtime Max Heapify

