CS321 Spring 2021

Lecture 2
Jan 13 2021

Admin

* Al Due next Saturday Jan 23rd — 11:59PM

Section
Section
Section
Section

Course In 4 Sections

: Basics and Sorting

I: Hash Tables and Basic Data Structs
Il: Binary Search Trees

V: Graphs

Section |

* Sorting methods and Data Structures
* Introduction to Heaps and Heap Sort

What is Big O notation?

A way to approximately count algorithm
operations.

A way to describe the worst case running time
of algorithms.

A tool to help improve algorithm
performance.

Can be used to measure complexity and
memory usage.

Bounds on Operations

An algorithm takes some number of ops to
complete:

a + b is a single operation, takes 1 op.
Adding up N nhumbers takes N-1 ops.
O(1) means ‘on order of 1’ operation.
O(c) means ‘on order of constant’.
O(n) means ‘ on order of N steps’.

O(n?) means ‘ on order of N*N steps’.

How Does O(k) = O(1)

O(n) =c* n for some c where c*n is always greater than n for some c.

O(k)=c*k
O(1l)=cc*1
let ccc = c*k

c*k = c*k* 1 therefore O(k)=c*k * 1 =ccc *1=0(1)

O(n) times for sorting algorithmes.

O(n) operations O(n) memory use

Insertion Sort O(N?) O(1)
Bubble Sort O(N?) 0(1)
Merge Sort N * log(N) O(1)
Heap Sort N * log(N) O(1)
Quicksort O(N?) O(logN)

Memory is in terms of EXTRA memory

Primary Notation Types

O(n) = Asymptotic upper bound. Longest
Q(n) = Asymptotic lower bound. Quickest.
©(n) = Both lower and upper bound.

*side note these are capital greek letters,
hence ‘Big O'.

Find Item in Linked List

Have a list of N strings. Want to see if the string
‘cs321’ is in the list.

What is the worst case search time?
What is the best case search time?

What is the average case search time?
Is there a © bound?

Find Item in Linked List

Have a list of N strings. Want to see if the string
‘cs321’ is in the list.

What is the worst case search time? O(n)
What is the best case search time?0O(1)

What is the average case search time?0(n/2)
Is there a © bound?No

Linked List Cache

Basic Algorithm:

Initialize data structures — Cache, temp
variables.

Read in text file as a single string.

For each word in text file:
— Is word in cache? // a cache method.

— Yes — continue for loop.
— No — addWordToCache. //cache method

Print Cache Statistics — // a cache method.

Word In Cache?

* inCache(w)

* 1

*)

— Increment cache 1 reference count.
— Search Linked List cachel for w // Big O time?

— If win cachel {increment cachel.hit, Move item to front of
list. return true}

— Else if no cache2 return false.
— Increment cache?2 reference
— Search linked list cache2 for w // Big O time?

— If win cache2 {increment cache2.hit, move to front of
Cache 2 and add to cache 1, return true}

addCacheWord

addWord(w) // add word to cache.

// not counting this as a cache reference, why?
If(cachel full){ remove last item in list}.//cost?
Add w to front of cachel.

If (cache?2) {

— If (cache?2 full) { remove last item in list // cost?
— Add w to front of cache2

}

What Causes Cachel to be different from Cache2?

Basic Computing Problem

* Sort a list of numbers in the quickest time
* A=[1,9,2,8,4,5,0,3,6,7]
Fori=0to 9:
forj=ito9:
if (Alj] <Ali]) swap(A,i,j);

What is the runtime of this?

Answer O(n”2)

Very simple sorting algorithm takes O(n”2).

Can we do better?

If the world were magic what is the best we
could do?

— O(n)
So should be able to do better than O(n”2)

Heapsort

A sorting algorithm that uses a specific type of
data structure: Max-Heap

Has a worst case and best case performance
of O(n*log(n)).

Pointl: Choice of data structure critical for
algorithm performance.

Point2: Additional example of Big-O analysis.

Components.

Input: list of N numbers stored in an array. Do
not know the order of the numbers.

Desired Output: the numbers sorted smallest
to largest.

Data structure: Max-Heap
Algorithm: Heapsort.

Max-Heap

— Definition:
To be a binary max-heap, two conditions need to be satisfied.
1. It should be a complete binary tree (all levels, except the last level, must be
full and all nodes in the last level need to be as far left as possible).

2. The value of a node should be greater than or equal to its children.

Ex: 91 52 91
/ N\ /o \ /\
77 46 77T 46 77 46
/ 0\ \ /N /N
69 3 11 69 3 11 69 3 11

not a max-heap not a max-heap a max-—heap

Heap Properties

— The height h of a heap with n nodes: h = 6(logn).
Since) with height h will have the minimum and maximum of nodes as

[ollows.
Minimmm of = 14+ 24924, + 91129
Maximum of n = 142424, 420 = -

From the above two equations, we can derive b = 8(logn).

Max-Heap in an Array

Array representation for a max-heap:

Assume array index starts at 1. Let heap-size[A] stands for the number of ele-
ments in the heap stored in the array A.

That is, A[l...heap-size[Al] stores the heap and the root of the heap is stored in
All].

The parent-child relationship between two nodes are represented by the follow-

ing formulas,

Given a node at array index i, Parent(i) — [i/2]
Left(i) — 2i
Right(i) = 2i + 1

The example max-heap in this page can be represented in an array as

91 | 77 [46 | 69 | 3 | 11

Heapsort

Heapsort (A)
1. Build-Max-Heap(A)

2. for i <-- length[A] downto 2

3. do exchange A[1] <--> A[i]
4, heap-size--
5. Max-Heapify (A, 1)

— Running time analysis of Heapsort(A):
Heapsort call Build-Max-Heap(A) once and call Max-Heapify(A) n — 1 times.

Thus, the running time is O(nlogn).

Maintain Heap Method

Max-Heapify(A, i) // heapification downward

Pre-condition: Both the left and right subtrees of node i1 are max-heaps
and i is less than or equal to heap-size[A]

Post-condition: The subtree rooted at node 1 is a max-heap

1. 1 <-- Left(i) 2i

2. r <-- Right(i) 2i+1

3. largest <-- 1

4, if 1 <= heap-size[A] and A[1] > A[i]

5. then largest <-- 1

6. if r <= heap-size[A] and A[r] > A[largest]

7. then largest <-- r

8. 1f largest =1

9. then exchange A[i] <--> A[largest]

10. Max-Heapify (A, largest)

Ex:

26

52
7\

/

7

29

Maintain Heap Example

38
/ \
22 65
\ / \ --> call Max-Heapify(A, 2) --> /
65 12 9 52
/ /\
31 26 7

\

2

38

22

/A
31 12

/
9

9

Build a Max-Heap

Build-Max-Heap(A)
1. heap-size <-- length[A]

2. for i <-- length[A]/2 // integer division

3. do Max-Heapify(A, i)
Ex: 46 46 46
/ \ / \ / \
11 7 —=> 11 91 --> 69 91
/ N\ / / N\ / /o /

Run time Max Heapify Ali]

Let n be the number of nodes in the subtree rooted at node 1.

Step 1 to Step 9 take O(1) time.

Step 10 is a subproblem to Max-Heapify node ¢'s subtree (either left or right
subtree).

Since the size of a subtree of node 7 is at most 2n/3 (occurs when the last row of

the tree is half full). Check the figure below.

X
/ \ There are k+1 nodes in the last level
X X Thus, n=1+k + k + k +1 = 3kt+2
/\ / \ This implies k = (n-2)/3 and
/ k\ / kA The size of the left subtree is 2k+1 = (2n-1)/3
/o N \ Taking out the constant, it is about 2n/3

XXXXXXXXX 0(9) + O(max-heapify (2ﬂ/3))

Runtime Max Heapify

0O(9) + O(max-heapify (2n/3))
0O(9) + O(9) + O(max-heapify (4n/9))
0O(9) + 0O(9) + O(9) + O(max-heapify(8n/27))

So, how many times can we divide N by 2: N = 2", h = log(N).

So, run time for Max Heapify = log(N)*0O(9) = O(logN)

	CS321 Spring 2021
	Admin
	Course in 4 Sections
	Section I
	What is Big O notation?
	Bounds on Operations
	How Does O(k) = O(1)
	O(n) times for sorting algorithms.
	Primary Notation Types
	Find Item in Linked List
	Find Item in Linked List
	Linked List Cache
	Word In Cache?
	addCacheWord
	Basic Computing Problem
	Answer O(n^2)
	Heapsort
	Components.
	Max-Heap
	Heap Properties
	Max-Heap in an Array
	Heapsort
	Maintain Heap Method
	Maintain Heap Example
	Build a Max-Heap
	Run time Max Heapify A[i]
	Runtime Max Heapify

