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Introduction



Topics

• Expectations
• Syllabus
• Goal – program design/system architecture
• Why Data Structures?



Expectations

• Know Java and can write basic Java programs.
• Are comfortable looking up Java API details.
• Will independently search for solutions to 

basic programing questions.
• Will correct my arithmetic errors in class – I 

make arithmetic errors.
• Will look up material independently.



What is a Data Structure?

• Array
• Linked List
• HashTable
• Tree



Introduction to Data Structures

• Why do we have data structures?
• ----????



Introduction to Data Structures

• Why do we have data structures?
– To look up data later!

• All data structures are designed to really do 
one thing:  Let us find the data we want, later, 
quickly and efficiently.

• All data structures trade off between:
– Space: memory use.
– Time: time to add or change data.
– Complexity: complexity of the algorithm.



Introduction to Data Structures

• This trade off is done for one reason:
– To optimize the speed at which a data item can be 

retrieved when an algorithm needs that data item 
to solve a problem.

• The best data structure for an algorithm is the 
one that provides the fastest retrieval of a 
specific data item exactly when it is needed.  
All other costs being equal.



Introduction to Data Structures

• Good programming is about:
– Writing good Data Structures that are reliable, 

robust, efficient, and provide quick access to 
needed data to the components of the program 
that need that data.

– If you want to write good code write good data 
structures and organize them carefully.

Presenter
Presentation Notes
Use an example of hoisting: Oil Rig calculation – computing a constant.  Two things are linked.



Oil Rig Story

• An Oil Company needed to stop all oil rigs 
simultaneously and recalculate their 
calibration.

• This took 24 hours of computation time.
• This amounts to many millions of dollars in 

lost revenue.

Story is Apocryphal = fancy way of saying can not confirm.



Oil Rig Story

• Hired a Computer Scientist to work on this.
• He spent 3 weeks studying the software.
• --company got rather impatient since he was 

just sitting around.



Oil Rig Story

• Hired a Computer Scientist to work on this.
• He spent 3 weeks studying the software.
• Discovered it was basically 3 nested for loops.
• In the center of the for loop was a call to a 

long computation function.
• This computation computed:  A CONSTANT!
• So run time was O(n^3 * C).



Oil Rig Story

• The Fix!
• Compute the CONSTANT outside of the for 

loops and store it in a variable for later use.
• The variable is our data structure!
• This reduced the total run time from 24 hours 

to 8 hours!
• The Computer Scientist enjoyed a notable 

bonus!



So what does this mean?

• Triangle of optimization Space, Time, 
Complexity.

Memory Use Number of Operations

Code Complexity

Increasing



Sorting Compared
Method/Structure Space Complexity Time

Insertion Sort/Array O(n) Simple O(n2)

Quicksort/Array O(2*n) Complex O(n2) (A(n*log(n))

Heapsort/Tree O(n) Complex O(n*log(n))

Mergesort/Array O(2*n) Simple O(n*log(n))

Counting Sort/Array O(k = range of n) Simple O(n)



Binary Search Trees
Method/Structure Space Complexity Time

Binary Search Tree O(n) Simple O(n)

AVL Tree O(n) Complex O(log(n))

Abstract Data Type
Search Tree Object Variant #1

Atree = createTree();
insertKey (int key, Data *data);
deleteKey(key);
Data *findKey(key);
deleteTree();

Search Tree Object Variant #2
Atree = createTree();
Node *insertKey (int key, Data *data);
Node *deleteKey(key);
Node *findKey(key);
deleteTree();



Abstract Data Type

• An abstract data type (ADT) is the set of 
minimal methods necessary to define a data 
structure without regard to how the structure 
is actually implemented.



Abstract Data Type: Examples

Stack
• Astack = newStack();
• Astack.push(int value);
• Astack.pop(int value);
• deleteStack(astack);

• The internals of the stack 
could be implemented as an 
array, tree, linked list but 
the ADT does not change.

Linked List
• Llist = newList();
• Llist.append(int value);
• Llist.delete(int value);
• Llist.find(int value);
• deleteList(astack);

• This is a linked list ADT but 
an extremely limited one.



Why Does this Matter?

• It defines a standard by which data structures can 
be compared and analyzed.

• You can switch different implementations of a 
linked list without worrying about compatibility if 
their ADT’s are the same.

• It lets you select the specific implementation of 
an ADT that best matches your applications 
requirements: speed versus size versus 
complexity.

• Java has lots of these.



Binary Search Trees

• Both have exactly the same ADT.
• However, a BST with no balancing will have 

very simple code.
• A Balanced BST (AVL) will have more complex 

code but better run time performance.
• Both have same memory consumption.



Linked List

• Linked List as an Array: wastes space but 
simple to code and fixed size!

• Liked List using pointers: space efficient, 
possible to corrupt memory, or lose pointers, 
not a fixed size.



Stacks?

• Stack as a linked list?
• Stack implemented using an array?



How do we select a Data Structure?

• Does its ADT have the methods we need?
• How much space does it use?
• What is its worst and best case performance?
• How complex is the code to implement it?



Coming Up

• First assignment comes out on Wednesday.



What is Big O notation?

• A way to approximately count algorithm 
complexity.

• A way to describe the worst case running time 
of algorithms.

• A tool to help improve algorithm 
performance.

• Can be used to count operations and memory 
usage.



Bounds on Operations

• An algorithm takes some number of steps to 
complete:

• a + b is a single operation, takes 1 op.
• Adding up N numbers takes N-1 steps.
• O(1) means ‘on order of 1’ operation.
• O( c ) means ‘on order of constant’.
• O( n) means ‘ on order of  N steps’.
• O( n2) means ‘ on order of N*N steps’.



O(n) times for sorting algorithms.
Technique O(n) operations O(n) memory use

Insertion Sort O(N2) O(N) 

Bubble Sort O(N2) O(N)

Merge Sort O(N * log(N)) O(N)

Heap Sort O(N * log(N)) O(N)

Quicksort O(N2) O(N)
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