
CS321 Data Structures

Jan 11 2021
Lecture 1

Introduction

Topics

• Expectations
• Syllabus
• Goal – program design/system architecture
• Why Data Structures?

Expectations

• Know Java and can write basic Java programs.
• Are comfortable looking up Java API details.
• Will independently search for solutions to

basic programing questions.
• Will correct my arithmetic errors in class – I

make arithmetic errors.
• Will look up material independently.

What is a Data Structure?

• Array
• Linked List
• HashTable
• Tree

Introduction to Data Structures

• Why do we have data structures?
• ----????

Introduction to Data Structures

• Why do we have data structures?
– To look up data later!

• All data structures are designed to really do
one thing: Let us find the data we want, later,
quickly and efficiently.

• All data structures trade off between:
– Space: memory use.
– Time: time to add or change data.
– Complexity: complexity of the algorithm.

Introduction to Data Structures

• This trade off is done for one reason:
– To optimize the speed at which a data item can be

retrieved when an algorithm needs that data item
to solve a problem.

• The best data structure for an algorithm is the
one that provides the fastest retrieval of a
specific data item exactly when it is needed.
All other costs being equal.

Introduction to Data Structures

• Good programming is about:
– Writing good Data Structures that are reliable,

robust, efficient, and provide quick access to
needed data to the components of the program
that need that data.

– If you want to write good code write good data
structures and organize them carefully.

Presenter
Presentation Notes
Use an example of hoisting: Oil Rig calculation – computing a constant. Two things are linked.

Oil Rig Story

• An Oil Company needed to stop all oil rigs
simultaneously and recalculate their
calibration.

• This took 24 hours of computation time.
• This amounts to many millions of dollars in

lost revenue.

Story is Apocryphal = fancy way of saying can not confirm.

Oil Rig Story

• Hired a Computer Scientist to work on this.
• He spent 3 weeks studying the software.
• --company got rather impatient since he was

just sitting around.

Oil Rig Story

• Hired a Computer Scientist to work on this.
• He spent 3 weeks studying the software.
• Discovered it was basically 3 nested for loops.
• In the center of the for loop was a call to a

long computation function.
• This computation computed: A CONSTANT!
• So run time was O(n^3 * C).

Oil Rig Story

• The Fix!
• Compute the CONSTANT outside of the for

loops and store it in a variable for later use.
• The variable is our data structure!
• This reduced the total run time from 24 hours

to 8 hours!
• The Computer Scientist enjoyed a notable

bonus!

So what does this mean?

• Triangle of optimization Space, Time,
Complexity.

Memory Use Number of Operations

Code Complexity

Increasing

Sorting Compared
Method/Structure Space Complexity Time

Insertion Sort/Array O(n) Simple O(n2)

Quicksort/Array O(2*n) Complex O(n2) (A(n*log(n))

Heapsort/Tree O(n) Complex O(n*log(n))

Mergesort/Array O(2*n) Simple O(n*log(n))

Counting Sort/Array O(k = range of n) Simple O(n)

Binary Search Trees
Method/Structure Space Complexity Time

Binary Search Tree O(n) Simple O(n)

AVL Tree O(n) Complex O(log(n))

Abstract Data Type
Search Tree Object Variant #1

Atree = createTree();
insertKey (int key, Data *data);
deleteKey(key);
Data *findKey(key);
deleteTree();

Search Tree Object Variant #2
Atree = createTree();
Node *insertKey (int key, Data *data);
Node *deleteKey(key);
Node *findKey(key);
deleteTree();

Abstract Data Type

• An abstract data type (ADT) is the set of
minimal methods necessary to define a data
structure without regard to how the structure
is actually implemented.

Abstract Data Type: Examples

Stack
• Astack = newStack();
• Astack.push(int value);
• Astack.pop(int value);
• deleteStack(astack);

• The internals of the stack
could be implemented as an
array, tree, linked list but
the ADT does not change.

Linked List
• Llist = newList();
• Llist.append(int value);
• Llist.delete(int value);
• Llist.find(int value);
• deleteList(astack);

• This is a linked list ADT but
an extremely limited one.

Why Does this Matter?

• It defines a standard by which data structures can
be compared and analyzed.

• You can switch different implementations of a
linked list without worrying about compatibility if
their ADT’s are the same.

• It lets you select the specific implementation of
an ADT that best matches your applications
requirements: speed versus size versus
complexity.

• Java has lots of these.

Binary Search Trees

• Both have exactly the same ADT.
• However, a BST with no balancing will have

very simple code.
• A Balanced BST (AVL) will have more complex

code but better run time performance.
• Both have same memory consumption.

Linked List

• Linked List as an Array: wastes space but
simple to code and fixed size!

• Liked List using pointers: space efficient,
possible to corrupt memory, or lose pointers,
not a fixed size.

Stacks?

• Stack as a linked list?
• Stack implemented using an array?

How do we select a Data Structure?

• Does its ADT have the methods we need?
• How much space does it use?
• What is its worst and best case performance?
• How complex is the code to implement it?

Coming Up

• First assignment comes out on Wednesday.

What is Big O notation?

• A way to approximately count algorithm
complexity.

• A way to describe the worst case running time
of algorithms.

• A tool to help improve algorithm
performance.

• Can be used to count operations and memory
usage.

Bounds on Operations

• An algorithm takes some number of steps to
complete:

• a + b is a single operation, takes 1 op.
• Adding up N numbers takes N-1 steps.
• O(1) means ‘on order of 1’ operation.
• O(c) means ‘on order of constant’.
• O(n) means ‘ on order of N steps’.
• O(n2) means ‘ on order of N*N steps’.

O(n) times for sorting algorithms.
Technique O(n) operations O(n) memory use

Insertion Sort O(N2) O(N)

Bubble Sort O(N2) O(N)

Merge Sort O(N * log(N)) O(N)

Heap Sort O(N * log(N)) O(N)

Quicksort O(N2) O(N)

	CS321 Data Structures
	Topics
	Expectations
	What is a Data Structure?
	Introduction to Data Structures
	Introduction to Data Structures
	Introduction to Data Structures
	Introduction to Data Structures
	Oil Rig Story
	Oil Rig Story
	Oil Rig Story
	Oil Rig Story
	So what does this mean?
	Sorting Compared
	Binary Search Trees
	Abstract Data Type
	Abstract Data Type: Examples
	Why Does this Matter?
	Binary Search Trees
	Linked List
	Stacks?
	How do we select a Data Structure?
	Coming Up
	What is Big O notation?
	Bounds on Operations
	O(n) times for sorting algorithms.

