
CS 321 Data Structures (Spring 2021)

Programming Assignment #1, Due on Saturday Jan 23rd 2021 (11:59PM)

Introduction:
This programming assignment asks you to design a cache implementation using a linked list data
structure. That is, write a Cache class having at least the following public methods – constructor,
getObject, addObject, removeObject, clearCache and some others. The data to be stored in cache
should be generic objects. Also, write a test program to test your cache implementation.

Description:
A cache is a storage in memory. If a data item has a copy in the cache, an application can read
this data item from cache directly. The usage of the cache is as follows. Whenever an application
requires a data item, it searches the cache first. If it is a cache hit, then the cache returns the
data item to the application and the data item will be move to the first position in the cache (we
call it the Most Recently Used MRU scheme). On the other hand, if it is a cache miss, then the
application needs to read the data item from disk and then the data item is added to the first
position of the cache. Note that if the cache is full, the last entry (oldest one) in the cache is
removed before a new entry can be added.

Similarly, whenever an application writes a data item to disk, the system will perform the same
write operation to the cache copy of the data item (if any) and then move it to the first position
in cache. Note that the write operation is equivalent to a remove operation followed by an add

operation.

One-level Cache:
A single-level cache and it works as described above.

Two-level Cache:
A 2nd-level cache sits behind the 1st-level cache. Usually, the 2nd-level cache is much bigger than
the 1st-level cache. Assume the 2nd-level cache contains all data in the 1st level cache, which is
called multilevel inclusion property. Two-level cache works as follows:

1) If 1st-level cache hit: Both cache have the hit data item. Move the hit data item to the top on
both cache.

2) If 1st-level cache miss and 2nd-level cache hit: The data item is not in 1st-level cache but is in
2nd-level cache. Move the data item to the top of 2nd-level cache and add the item to the
top of 1st-level cache.

3) If 1st-level cache miss and 2nd-level cache miss: Retrieve the data item from disk and add the
item to the top of both cache.

Hit Ratio:
Some terms used to define hit ratio are:
HR: (global) cache hit ratio
HR1: 1st-level cache hit ratio
HR2: 2nd-level cache hit ratio
NH: total number of cache hits
NH1: number of 1st-level cache hits



NH2: number of 2nd-level cache hits
NR: total references to cache
NR1: number of references to 1st-level cache
NR2: number of references to 2nd-level cache (= number of 1st-level cache misses)

• One-level cache: HR = NH
NR

• Two-level cache: HR1 = NH1
NR1

HR2 = NH2
NR2

HR = NH1+NH2
NR1

What you need to do:

1. On Onyx create a directory ∼/cs321/lab1 for this assignment.

2. Write a Cache class.

3. Execute the following command (assuming you are in the directory ∼/cs321/lab1) to make
a link to the text file. This is better than copying the file since Onyx disk space is shared.
You can download it to your own machines if you like. Please do not include this file in your
project submissions.

ln -s ∼stevencutchin/cs321/labs/lab1/files/Encyclopedia.txt

4. Write a test program. It’s usage should be

java Test 1 <cache size> <input textfile name> or
java Test 2 <1st-level cache size> <2nd-level cache size> <input textfile name>

The cache size(s) and the text file should be input as command line arguments. Your program
should create a cache (option 1) or two cache (option 2) with the specified size(s) and read
in the input text file word by word. For each word, search the cache(s) to see whether there
is a cache hit and update the cache accordingly. I will use the file Encyclopedia.txt and a
small text file to test your program.

5. Your program should output the cache hit ratio(s) after reading all words from the input text
file. You can find the sample outputs, result1k2k and result1k5k, in the directory

∼stevencutchin/cs321/labs/lab1/files/

Submission:

Submit your assignment on Blackboard through the submit page for the assignment.


