
Recursion

Mason Vail, Boise State University Computer Science

Examples from Java Foundations, 3rd Ed., by Lewis, DePasquale, and Chase



Recursive Definition

24, 88, 40, 37

A LIST is a:
number

or
number comma LIST



Infinite Recursion

Base Case: Every recursive definition must have a 
non-recursive part - a stopping point - a simple 
case for which the answer is known.

Without a base case, there’s no way to end a 
recursion, creating a similar problem to infinite 
loops.



Recursion in Math

Factorial: N! for any positive N is the product of all integers 
from 1 to N inclusive.

N! can be expressed recursively:

0! = 1

N! = N * (N-1)!



Recursive Methods

A method can call itself.

The code must handle base and recursive cases to avoid 
infinite recursion. Each recursive call should be a simpler 
version of the problem, getting closer to a base case.

The call stack stores all of the partial solutions until a base 
case is recognized and recursive calls stop. As methods 
return, the total solution is assembled.



Recursive Programming Example: Summation

There are better ways to compute the sum of all integers from 
1 to N, but a recursive definition would be:

sum(1) = 1

sum(N) = N + sum(N-1)



Recursive Programming Example: Summation

public int sum(int num) {
int result; 
if (num == 1) 
result = 1; 

else 
result = num + sum(num-1); 

return result; 
}



General Recursive Algorithm

● If the problem can be solved for the current version of the 
problem (the base case):
○ Solve it.

● Else:
○ Recursively apply the algorithm to one or more smaller 

versions of the problem.
○ Combine the solutions to the smaller problems to get 

the solution to the original.



Indirect Recursion

A method calling itself is direct recursion, but a sequence of 
methods that eventually calls the first can result in indirect 
recursion.

This is often difficult to understand and debug.

A higher-level recursive method with subroutine method calls 
can avoid this confusion.



Recursion vs. Iteration

Every problem that can be solved recursively can also be 
solved iteratively.

Recursive solutions have the overhead of multiple method 
invocations and may be less efficient (though not necessarily 
with a change in order).

However, some problems are more easily and elegantly 
expressed recursively.



Example Problems with Elegant Recursive Solutions

● Maze traversal (depth-first with backtracking)

● Towers of Hanoi



Recursion

Mason Vail, Boise State University Computer Science

Examples from Java Foundations, 3rd Ed., by Lewis, DePasquale, and Chase


