UML: Uniform Modeling Language

UML is a standardized design language for object-oriented
programming in various languages. The website for UML is
http://www.uml.org. UML diagrams can be classified into four
types.

» Class Diagram. Shows relationships between various classes in
a project.

» Object Diagram. Shows interactions between various objects
in your project.

» Collaboration Diagram. Shows associations between various
objects. Similar to relationships between classes but differs
since we usually show the methods being called and values
being returned.

» Sequence Diagram. Shows interactions between various
objects based on a time-line.

Class Diagrams

Classes are drawn as rectangles, which may be divided into 1, 2 or
3 partitions. The top partition is for the class name, the second
one for the class variables, and the third one for the methods or
operations. Each variable/method is preceded by a visibility
indicator.

» + indicates public
» - indicates private
> # indicates protected

Interfaces are shown as classes except it has only two partitions. A
interface name is preceded by a stereotype tag to show that it is a
special kind of a class.

Methods/classes that are abstract are shown italicized.

UML Class Diagram

Rectangle
-width: double
-length: double

+Rectangle()

+calculateArea(): double

We are using the Dia program to generate the UML diagrams. It is
available for free for Linux, MS Windows, MacOS X from
http://projects.gnome.org/dia/

DHa

UML Interface Diagram

<<1nterface=x
Drawable

+draw()

+f1111()

[l = = = >

Inheritance and Associations

» Inheritance. A solid line with a closed arrowhead from the
subclass to the superclass.

» Implements. A dashed line with a closed arrowhead from the
implementing class to the interface.

Inheritance

Rectangle

-width: double
-length: double

+Rectangle()

+calculateAreal): double
+calcPerimeter(): double

A

Square

+Square()

+calcPerimeter(): double

[m]

>

Inheritance Hierarchy

Amphibian [Mammal | |Reptile|
/\

>

A Package

java.aninlalsl

/\

A

[Amphibian|

|Mamma||

|F{eptile|

A

Implements

<<interfaces==
Comparable

+compareTo{obj:0bject): int

A

Name

-first: String

-middle: String

-last: String

+Name|()

+toStringl(): String
+getFirst(): String
+getMiddle(): String
+getlast(): String
+compareTo(obj:0bject): int

[m] = =

>

Associations

» Associations. A solid labeled line shows that two classes are
associated. A small solid triangle (right next to the label)
shows the direction of the association. An optional open
arrowhead can be used to denote the direction of the
association.

Numbers at either end indicate are the multiplicity indicators.
Here are are some examples of multiplicity indicators.

1 one
0..2 zero to two
0..x zero or more

*x Zero or more
1..x one or more

Association Example

RectangleUser
-rect: Rectangle
+main({args:Stringl])

+User
1

Contains®

+Usee
1..*
Rectangle
-width: double
-length: double

+Rectangle()
+calculatedreal(): double

[m] [l = = >

Aggregation

» An Aggregation is an association in which one class contains
many others. The container class has a diamond on its end of
the association line.

PhotoAlbum

Contains

Photo

Inheritance and Dependency

Book
#pages: 1nt
+pageMessage() : void

--------- B Dictionary
-definitions: 1int
+defintionMessage() : void

Words

+main{args:String(]): void

u]
8
I
i
!

Employees Example

Firm

+main{args:Stringll): void
T

Staff 221 StaffMember
“stafflist: StaffMember (] <>1—|_#"3W= String
#address: Stris
+payday (): void ephone - Stri.ngng

+toString(): String
+pay () : double

Volunteer Employee
#socialSecurityNumber: String
+pay() : double #payRate: double

+toString(): String
+pay(): double

i

Executive Hourly
-bonus: double -hoursWorked: 1int
+awardBonus (execBonus:double) : void +addHours(moreHours :int) : void
+pay() : double +pay(): double
+toString(): String

A Clock Heirarchy Diagram

javax.swing. JApplet <<interfaces>
ActionListener

é +actionPerformed(event:ActionEvent): void

Clock
#seconds: 1nt
#minutes: 1nt
#hours: int Containes
#timer: Timer Anising
+getSeconds () : 1nt
+getMinutes () : int
+getHours(): 1int
+draw(page:Graphics): void
+pailnt(page:Graphics): void
+actionPerformed{event:ActionEvent) : void

action ed(event)

The paint method calls = =
the draw method | javax.swi ng.'l'l mer

+Timer{delay:int, listener:ActionListener)

Digital Clock AnalogClock

+draw(page:Graphics): void +draw(page:Graphics): void
[m] = =

The Address Book Class Diagram

<<interface>> CmdLineAddressBook
Comparable

+compareTo(obj :0bject): int

oot Tt T T T N Uses»
N i
: Contact
] “name: Name N
1 -address: Address
] -phene: String AddressBook
! m;}ag?gggm “contacts: Contact(]
' -birthate: ContactDate :f;Z:(‘lt”‘ int
1 -lastMeeting: ContactDate R e
: r:l:;”'g;:l: string -DEBUG: boolean = false
' _ﬁmg S”lﬁ -tags: stringl]
H 9 -nextToken: String
1
' B <Uses Uses» 1
«
' ses Usess
N <Uses
f <Uses <Uses
N Usesy Usess.
RPN s [. <Uses
[A . Uses» |
. Add : I 2 2
Name ress ContactDate Get
Firet: string “postOfficeBox: String S e———

-streetAddr: String
-city: String
-state: String
-postalcode: String
-country: String

-middle: String
-last: String

-df: DateFormat

Object Diagrams

Objects are drawn the same way as classes with 1/2/3 partitions.
The difference is that names for objects are underlined and consist
of the name and type of the objects.

When depicting object interactions, an active object is shown in
bold face.

Objects send messages to each other (through method class and
return values). This are shown as labeled links with an arrow
denoting the direction.

[objectl: RectangleUser]

calculdteareal)

[object2:Rectangle]

Object Interaction

app: CmdlineAddressBook
mycontacts:AddressBook

mycontacts: AddressBook

contacts: Contact]]

