Homework 2 (90 points), Spring 2004

Q1: Exercise 2.3-3 (10 points)

Use mathematical induction to show that when n is an exact power of 2, the solution of the
recurrence
2 ifn=2

Tn) = { 2T (n/2) +n if n=2F for k> 1
is T'(n) = nlogn.
e Base Step:
If n =2, then T'(2) =2 and 2log2 = 2
Thus, T'(2) = 2log 2

e Hypothesis Step:
Assuming T'(n) = nlogn is true if n = 2 for some integer k > 0

e Induction Step:
If n = 21 then

T(Qk-i—l)
= 27(2F+1/2) + 2k+1
= 27/(2F) + 2+
= 2(2"log2%) 4 2M*!
= 2M1((log2¥) + 1)
— 9k+1 log ok+1

Q2: Exercise 3.1-3 (10 points)

b2

Explain why the statement, “The running time of algorithm A is at least O(n?),” is mean-

ingless.

e Let T'(n) be the running time for algorithm A and let a function f(n) = O(n?). The
statement says that T'(n) is at least O(n?). That is, T'(n) is an upper bound of f(n).
Since f(n) could be any function “smaller” than n? (including constant function), we
can rephase the statement as “The running time of algorithm A is at least constant.”
This is meaningless because the running time for every algorithm is at least constant.

Q3: Problem 3.2 (10 points)

Indicate, for each pair of expressions (A, B) in the table below, whether A is O, 0,9, w, or
O of B. Assume that £ > 1,e¢ > 0, and ¢ > 1 are constants. Your answer should be in the
form of table with “yes” or “no” written in each box.

1

A B O| o | Q| w]| O

1Ig" n nt yes | yes | no | no | no

nk " |yes|yes| no| no| no

e V/n 1" | no | mno | no| no | no
2 272 1 no | no | yes | yes | no
nem ml" [yes | no | yes | no | yes
lg(n!) lg(n™) | yes | no | yes | no | yes

Q4: Exercise 4.1-6 (10 points)

Solve the recurrence T'(n) = 27(y/n) + 1 by changing the variable. Your solution should be
asymptotically tight. Do not worry about whether values are integral.

e et m=Ign
Then T'(n) = T(2™) = 2T(2™/?) + 1
Let S(m) =T(2™)
Then S(m) = 2T(2™/?) 4+ 1 = 28(m/2) + 1
By using master method’s first case, we S(m) = ©(m)
SoT(n)=T(2™) = S(m)=06(m)=06(lgn)

Q5: (10 points)
Use the substitution method to show the solution of T'(n) = T(n/3) + 1 is O(logn). You
may want to prove T'(n) < c¢-logsn and use n = 3 to show the boundary (base) case.
e Boundary (Base) case: When n =3, T'(3) = 2 < ¢ - logy 3 is trure if ¢ > 2.
Assume T'(n/3) < c¢-logs(n/3) is ture for some c.

T(n)=T(n/3)+1
< c-logs(n/3) +1
= clogzn —clog; 3 +1
=cloggn —c+1
< clogszn ife>1

Q6: (10 points)

Use the recursion tree method to solve T'(n) = T(n/3) + 1.

e The figure on the next page shows the tree, where 7'(n) = logsn + 1 = ©(logn).

5

IO% n @ T(n) = Sum of the tree

=Iogsn+ 1

5

Q7: (10 points)
Please use the recursion tree method to solve the following recurrence
T(n) =T(n/5) +T(4n/5) +n

e The figure below shows the tree, where T'(n) > nlogsn = Q(nlogn) and T'(n) <
nlogs;,n = O(nlogn). Thus, T'(n) = ©(nlogn).

S n —_— n

n/5 4n/5 n

/NN)

log_n n25 4n/25 4n/25 16n/25
p Iogsmn

-1 1 R n
<=n
1 = <=n

Q8: Exercise 4.3-1 (10 points)

Use the master method to give tight asymptotic bounds for the following recurrences.

e (a) T'(n) =4T(n/2) +n
nlogr® = plog2d — p2 and f(n) =n
There exist € > 0 such that f(n) = O(n'°%)
Case 1, T'(n) = O(n'°% %) = O(n?)

e (b) T'(n) =4T(n/2) +n?
nlogrs = plosad = n? and f(n) = n?
Since f(n) = O(n'*&?)
Case 2, T(n) = O(n'&21logn) = O(n?logn)

e (¢c) T(n)=4T(n/2) +n?
nlogba — nlog24 — n2 and f'(n) — n3
There exists € > 0 such that f(n) = Q(n!°8 <)
There exists constant 1/2 < ¢ < 1 such that
a-f(n/b)=4-f(n/2)=n*/2<c- f(n)=c-n?is true.
Case 3, T(n) = O(f(n)) = O(n?)

Q9: (10 points)

Can the master method to be applied to the recurrence T'(n) = 4T (n/2) + n*logn? Justify
your answer.

e a=40b=2 f(n)=n?lgn,n'®* =n?
The ratio of f(n)/n'®® = lgn. This implies f(n) is asymptotically larger than n's»®,
but not polynomially larger.
Thus, the master method can not be applied to solve this recurrence.

