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ABSTRACT

The advent of digital age has resulted in more television consumers switching to

Digital TV with considerable improvement in image quality and ease-of-use. Con-

sumers are able to select and view television programs and channels of choice by

using a pay-per-use model or streaming video from their computer terminals. In all

these use cases, the media provider requires a means by which they can restrict the

consumers from watching selected programs for a pre-approved temporal interval. The

consumer needs to be prevented access to certain pay-per-use channels and programs

upon expiry of this pre-approved access. This necessitates the media provider to have

a way to generate and assign time-bound secure access keys which could be granted

and removed easily. In conventional key assignment schemes, one has to renew the

keys periodically and redistribute the keys to the users accordingly. To allow a user

to access all the authorized data over some temporal window, this straightforward

implementation requires him/her to keep a lot of keys which is very inefficient.

In contrast to conventional schemes, a time-bound hierarchical key assignment

scheme updates the keys periodically according to the class hierarchy and an entity

only keeps a small amount of information for deriving all his entitled keys. Wang

and Laih (WL) proposed a scheme with a concept of merging, which provides a

systematic way to solve the problem. Yeh-Shyam (YS) scheme has improved on the

WL scheme and has theoretically shown polynomial improvement in both memory

and performance requirement. In this project, we will compare and contrast these

secure key generation techniques and provide comparative analytical results.
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CHAPTER 1

INTRODUCTION

1.1 Access Control and Key Management

Access control is a central element of computer security. It is defined as the prevention

of unauthorized use of a resource, including the prevention of use of a resource in an

unauthorized manner. The principal objectives of computer security are as follows:

• Prevent unauthorized users from gaining access to resources

• Prevent legitimate users from accessing resources in an unauthorized manner

• Enable legitimate users to access resources in an authorized manner

The objective of key management is to assign keys to users and resources such

that access rights are controlled efficiently and enforced correctly. The metrics used

to measure the efficiency of key management schemes include:

• The size of private information stored for each user, this is the number of secret

keys

• The computation involved to allow the user obtain access to the desired resource,

this is the process of key derivation

• The additional computation involved when either the set of users change or the

position of the user changes relative to other users in an hierarchy
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• The amount of information held by the Central Authority (CA)

A solution to key management problem is to assign a key to each and every user

for each class they are entitled to access by the Central Authority. This solution

though simple will require each user to store an enormous number of keys and the

storage requirement will grow out of control. Hence, a more efficient approach is to

use key derivation schemes which allows the user to derives keys based on need.

1.2 Hierarchical Access Control Systems

Hierarchical access control exist in a number of computer science applications. For

example, the Filesystem Hierarchy Standard (FHS) defines the main directories and

their contents in Linux Operating Systems. In early 1996, the goal of developing

a more comprehensive version of filesystem standard to address not only Linux,

but other Unix-like systems was adopted with the help of members of Berkeley

Software Distribution (BSD) development community. A typical filesystem provides

the following roles and authorization:

1. User: a person who uses the system

2. User account: the foundation of security, a means of identifying users on a

system

3. Group: a grouping of users sharing a common need

4. Group account: method used to group user accounts on a system

The operating system has the ability to control what resources users (or groups

of users) can access. Different permission paradigms exist:
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• No permissions: DOS, Win9x, MacOS9

• Simple permissions: default in UNIX and Linux

• Access Control Lists (ACLs): Windows NT/2K/XP/Vista; optional in Unix

and Linux

The concept of filesystem permissions in UNIX operating system is managed with

the three permission classes - Owner, Group and World

1. Owner: This may be the creator of a resource such as a file. For system re-

sources, ownership may belong to a system administrator. For project resources,

a project administrator or leader may be assigned ownership.

2. Group: In addition to the privileges assigned to an owner, a named group of

users may also be granted access rights, such that the membership in a group

is sufficient to exercise access rights. In most schemes, a user may belong to

multiple groups.

3. World: The least amount of access is granted to users who are able to access the

system but are not included in the categories owner and group for this resource.

There are a wide range of services and applications which require authentication

and authorization at various hierarchical levels:

• With the advent of high-definition television system, there are various providers

such as cable TV and dish network who provide Video-On-demand. Here the

subscriber is allowed access to television programs for a pre-paid time period.

In addition, there are also packaged services which allow subscribers to watch

certain channels for an extended period of time.
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• Enterprise Software which allow administrators and users to access for certain

portions of the software application based on pre-paid subscription. There are

also applications especially demo programs which work for 1-month allowing

users access during trial periods.

• Computer and video games which allow access based on role and authorization.

• Digital libraries such as books and music which allow access to different levels

of subscribers.

• Internet banking systems which allow access to certain portions of the banking

system based on authentication, authorization and access control. For example,

joint account users will be able to access certain areas of their account but lock

out access to certain other areas. Online bill payment requires a different level

of authorization.

1.3 Project Motivation

The motivation of this project is to describe and compare the implementations of the

following two key generation algorithms:

• Wang-Laih (WL) Merging Function and Scheme [14]

• Yeh-Shyam (YS) New Merging Function and Scheme [16]

The goal of the project is three-fold:

• Describe the theory and design steps for the two schemes

• Implement the two schemes using the Java Programming language to generate

the time-sensitive keys for a number of classes
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• Measure the performance metrics of the two schemes, specifically memory re-

quirement and computational complexity

1.4 Project Plan

The following is a list of itemized tasks which was planned and delivered for this

project.

Item Task Task Duration
1.0 Preliminary Investigation 2 weeks
1.1 Read prior art and research papers 2 weeks
1.2 Understand the algorithms 4 weeks
2.0 Design and Implement Schemes
2.1 Wang-Laih (WL) Scheme 4 weeks
2.1.1 Implement WL scheme and merge function 2 weeks
2.1.2 Generate WL time-sensitive keys 1 week
2.1.3 Test Key Assignment and Key Derivation 1 week
2.2 Yeh-Shyam (YS) Scheme 4 weeks
2.2.1 Implement YS scheme and merge function 2 weeks
2.2.2 Generate YS time-sensitive keys 1 week
2.2.3 Test Key Assignment and Key Derivation 1 week
3.0 Data Analysis
3.1 Storage requirements 9 days
3.1.1 Identify parameters which will be used for storage 2 days
3.1.2 Compute and capture storage requirement results 1 week
3.2 Performance Requirements 9 days
3.2.1 Identify parameters which will be used for performance 2 days
3.2.2 Compute and capture performance requirement results 1 week
3.3 Compare WL and YS merge functions 3 days
4.0 Documentation 3 weeks
4.1 Project Write up 2 weeks
4.2 Project Presentation 1 week

Table 1.1: Project Plan
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1.5 Project Organization

Chapter 2 describes the literature search done on various key generation algorithms

based on prior art. This includes the seminal paper by Akl-Taylor which was op-

timized by MacKinnon et al. and a number of other researchers. We will describe

the progression of algorithms and theoretically describe the performance and storage

requirements. In Chapter 3 we will review Wang-Laih key assignment scheme, its

encryption key generation, user key derivation including security and performance

requirements. In Chapter 4, we will review our proposed update to WL merging

technique - define the encryption key generation, user key derivation including YS

scheme’s security and performance requirements. In Chapter 5, we will describe

the design and implementation details of the two schemes using the Java object

oriented programming language. Here we will analyze the implementations in WL

and YS schemes, compare and contrast the performance and storage results for the

two afore-mentioned schemes. The solution will consist of the merging technique

used by both WL and YS schemes and will show an improvement in security and

performance analysis of our YS scheme. In Chapter 6 we will provide results and

conclusions and provide recommendations for future research.
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CHAPTER 2

KEY GENERATION IN HIERARCHICAL SYSTEMS

This chapter defines the problem of key generation and assignment in hierarchical

systems. We will review and compare a number of schemes and the pros and cons of

each approach. The main idea behind the key assignment scheme is to assign derivable

encryption key to classes so that legal data flow can be controlled by these keys. A

key assignment scheme ensures that a key Ki in class Ci is computationally feasible to

derive another key Kj in class Cj if and only if users in Ci are allowed to access data

in Cj. There is the concept of a central authority (CA) which maintains the keys and

distributes any related public information. Most of these schemes operate on prime

numbers and grow proportionately large with the depth of the hierarchy. During key

generation and derivation, they perform operations such as multiplication, division,

modular exponentiation and other complex crypto operation. Fig. 2.1 depicts a

sample class hierarchy where class C1 can derive keys for class C4 but not the other

way around.

The pioneering work which provided a solution to the problem of key management

in hierarchical access control systems was put forth by Akl and Taylor [1] in 1983.

They defined the term security class which divided the hierarchical system into a set of

C = C1,C2,...Cm of classes with the binary relation Cj � Ci. Users in Cj have security

clearance lower than or equal to those in Ci. In other words, users in Ci have access
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C1

C2

C7

C5

C10C9C8C6

C4C3

Figure 2.1: Class Hierarchy
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to information held by users in Cj while the opposite is not allowed. A larger number

of publications have been put forth which have provided improvements to Akl-Taylor

key assignment scheme [8], [11], [15], [5], [17], [18], [3], [4] . Most researchers have

proposed schemes that have better performance while inserting and deleting classes

in the hierarchy. Some of the schemes have been proven to be vulnerable to security

attacks [13], [10].

In 2002, Tzeng [13] extended the problem by adding an extra dimension where

in the data flow not only depends on security classes but is also time senstive. He

proposed a time-bound cryptographic key assignment scheme in which the crypto-

graphic keys of a class are different for each time period, that is, the cryptographic

key of class Ci at time t is Ki,t. This meant that a user in class Ci from time t1

to t2 is provided information I(i, t1, t2) where 1 ≤ i ≤ m, t1 ≤ t2 such that with

this information, he/she will be able to compute the key Kj,t of Cj at time t if and

only if Cj � Ci and t1 ≤ t ≤ t2. Without further modifications and optimizations,

schemes which use the Akl-Taylor methodology would require users to keep track

of a large number of keys which would need to be regenerated for various time

intervals. Tzeng considered the time-versus-space tradeoff and proposed a scheme

where the size of I(i, t1, t2) was independent of the number of total classes and time

period in the hierarchy. The scheme is efficient in key storage and computation time

due to the fact that the same key can be utilized with varied time bounds and for

multiple sessions. This time-bound hierarchical access control scheme extended to

applications such as pay-on-demand cable TV system and cryptographic key backup

systems. Unfortunately, Chien [4] proved that Tzeng’s scheme was vulnerable to

collusive attack and proposed a solution. Further work by Chien [5], Huang and

Chang [7] have also been shown to be insecure against collusion.
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There have been a number of schemes which have attempted to further optimize

the storage and performance requirements needed by key generation and derivation

schemes. A few such optimizations include batching and merging. Batching is a

technique where key reassignment requests are accumulated until a predetermined

threshold of requests is reached. A second technique called merging creates greater

correlation between group keys by compressing them to single aggregate keys and

works even for time-bound classes. Merging is very similar to image compression

algorithms which use correlation between neighboring (past) pixels to help predict

a value for the consecutive (future) pixel. An efficient key management requires a

deterministic algorithm that ensures scalable growth in key size.

Recent developments. In 2006, Wang and Laih in [14] proposed a more optimal

solution referred hereto as WL scheme for solving time-bound hierarchical access

control system. The core aspect of the WL scheme is the merging technique. The

system constructs a global hierarchy which consists of z sub-hierarchies, one for

each time interval t ∈ [1, z]. Each sub-hierarchy in time interval t is the same for

the original class hierarchy, except that each class Ci in the sub-hierarchy has an

additional index t. A class Ci in each time interval t will be indexed as Ci,t. Each

class Ci,t will be assigned a piece of secret information called its primitive key K ′i,t.

The encryption key Ki,t or the user key I(i, T ) is an aggregate key which is a merge

of the primitive keys of lower classes in the hierarchy. The merging technique finds

its roots in the area of image compression. The encryption key Ki,t for class Ci,t is

a merge of the primitive keys for all classes Cj,t � Ci,t in the global hierarchy. In a

similar fashion, the user key I(i, T ) for a user in class Ci is a merge of the primitive

keys for all the classes Cj,t � Ci,t for all time intervals t ∈ T in the global hierarchy.

Only the Central Authority which has knowledge of the secret information will be
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able to feasibly perform the merge operation. However, any user with the aggregate

key I(i, T ) will be able to recover any of its sub-aggregate keys Kj,t, if the set of

primitive keys for I(i, T ) is a superset of those for the sub-aggregate key Kj,t, that is

when Cj,t � Ci,t and t ∈ T . Thus the key assignment scheme development becomes

nothing but designing an optimal merge function. The merge function needs to be

designed such that legal key generation is derivable but an illegel key derivation is

not viable even if there is large amount of time.
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CHAPTER 3

AKL-TAYLOR SCHEME

This scheme is a seminal key assignment scheme and is not time sensitive. Suppose

CA wants to assign secret keys to a number of disjoint classes: C1, C2, · · · , Cm which

are partially ordered with a binary relation ”�”. Let Ki denote the key assigned to

the class Ci, i ∈ [1,m]. The meaning of Cj � Ci is that it is feasible to derive Kj

from Ki. In addition, from all Kjs where Ci � Cj, the users cannot derive Ki. The

relationship between the classes may be described by a partial-order hierarchy, as

shown in Fig. 3.1.

3.1 Setup

CA chooses two distinct large primes p and q which are secret and makes N = p · q a

public value. The CA chooses a secret random g ∈ Z∗N . For each class Ci, CA chooses

a distinct prime εi and publishes it publicly.

3.2 Key Generation and Distribution

For each i ∈ [1,m], the CA computes the secret key Ki by,

Ki = gei(mod N) (3.1)
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where

ei =

 1 if Ci is a root∏
{j:cj�ci} εj otherwise

(3.2)

3.3 Key Derivation

Let Cj � Ci and suppose the user of Ki wishes to compute Kj. Then he computes,

(Ki)
ej/ei (mod N) = (gei)ej/ei (mod N) = gej(mod N) = Kj (3.3)

This computation is feasible only if ei|ej which by design is valid since Cj � Ci iff

ei|ej. Hence the user of Ki can always compute Kj if Cj � Ci.

3.4 Example

Consider the class hierarchy depicted in Fig.3.1. The number of classes m = 6. First

the CA chooses N and g. Then the CA makes the global hierarchy and assigns public

primes ε1 = 2, ε2 = 3, ε3 = 5, ε4 = 7, ε5 = 11 and ε6 = 13 as shown in Fig.3.2. Fig.3.3

depicts the values of ei for each class i.
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C1

C2 C3

C6C5C4

Figure 3.1: Class Hierarchy with 6 classes



15

2

3 5

13117

Figure 3.2: Class Hierarchy with ε values



16

1

2*3*7

2*3*5*7*112*3*5*7*132*3*5*11*13

2*5*13

2

3 5

7 11 13

Figure 3.3: Class Hierarchy with values for ei
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CHAPTER 4

WANG-LAIH SCHEME

This scheme is a recent time-bound hierarchical key assignment scheme which has no

cryptoanalysis done against it yet.

4.1 Setup and Initialization

The CA chooses a proper modulus N and g. For each class Ci,t in the global hierarchy,

the CA assigns a distinct prime εi,t. The primitive key K
′
j,t for each class Cj,t is defined

as,

K
′

j,t = gE/εj,t(mod N) (4.1)

where,

E =
∏

i∈[1,m],t∈[1,z]

εi,t (4.2)

Note that the primitive keys are not real keys. The CA does not actually assign

primitive keys to classes. The aggregate key is a merge of a set of primitive keys

below the aggregate key in the global hierarchy. Let Si,t be the set of primitive keys

for those classes below (and including) Ci,t in the global hierarchy, that is,

Si,t =
{
K
′

j,t : Cj,t � Ci,t

}
(4.3)
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Similarly, let Si,T be the union of primitive keys in all Si,t, t ∈ T . That is,

Si,T =
{
K
′

j,t : Cj,t � Ci,t; t ∈ T
}

(4.4)

4.2 Merge Function

Let < g > denote the cyclic group generated by g in the ring ZN . Given a modulus

N and base g ∈ Z∗N with the input S being a set of integers in < g >, the merge

function is defined as:

Mg,N (S) = ggcd{logg,N (k):k∈S}(mod N) (4.5)

where logg,N (k) is the logarithm of k with respect to the base g in < g >.

4.3 Encryption Key Generation

For each class Ci,t, an encryption key Ki,t is assigned by computing,

Ki,t = gαi,t(mod N) (4.6)

where,

αi,t = E/

 ∏
Cj,t�Ci,t

εj,t

 (4.7)

By the definition of merging, the encryption key Ki,t in equation 4.6 is nothing

but the aggregate key merged from a set of primitive keys in Si,t, that is,

Ki,t = Mg,N (Si,t) (4.8)
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since

Mg,N (Si,t) = ggcd(E/εj,t:Cj,t�Ci,t)(mod N) (4.9)

= gαi,t(mod N) (4.10)

4.4 User Registration

If the user is assigned to class Ci for a set of time intervals T , the CA gives the user

an aggregate key I(i, T ) as a user key by computing,

I(i, T ) = gαi,T (mod N) (4.11)

where

αi,T = E/

 ∏
Cj,t�Ci,t,t∈T

εj,t

 (4.12)

Similarly, I(i, T ) defined by 4.11 is again a merge of the set of primitive keys in

Si,T , that is,

I(i, T ) = Mg,N(Si,T ) (4.13)

since

Mg,N(Si,T ) = ggcd(E/εj,t:Cj,t�Ci,t,t∈T )(mod N) = gαi,T (mod N) (4.14)
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4.5 Key Derivation

If a user with a user key I(i, T ) would like to derive an encryption key Kκ,τ , he can

compute,

I(i, T )
ακ,τ
αi,T = (gαi,T )

ακ,τ
αi,T = gακ,τ (mod N) = Kκ,τ (4.15)

The above computation is feasible to compute if and only if the exponent ακ,τ
αi,T

is

an integer. Furthermore, the exponent ακ,τ
αi,T

is an integer if and only if Cκ � Ci and

τ ∈ T . The proof can be found in [14].

4.6 Example

Consider the class hierarchy depicted in Fig.4.1. The number of classes m = 4. First

the CA chooses a proper modulus N and g as in the Akl-Taylor scheme. Then the CA

creates a global hierarchy which consists of subhierarchy for each time slot t ∈ [1, t].

The subhierarchies are the same as the original class hierarchy except that the classes

are additionally indexed by t as depicted in Fig.4.2 with t = [1, 4]. Each class Ci

is replaced by Ci,t for all i and time period. The constructed time-bound global

hierarchy is depicted in Fig.4.3.

4.7 Security Analysis

In the WL scheme, the assigned keys Ki,t are the result of applying Akl-Taylor scheme

recursively, it is obvious that, from all Kj,τ s where τ 6= t and all Kj,ts where Ci � Cj

(or Ci,t � Cj,t equivalently), it is not feasible to derive Ki,t. In this scheme, the CA

gives each user an aggregate key. A subset of users can join together, use each of

their aggregate key collectively but will not be able to derive unauthorized keys. This
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C3

C1

C2

C4

Figure 4.1: Class Hierarchy [1]
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C1,t

C2,t C3,t

C4,t

Figure 4.2: Sub-hierarchy for time period t ∈ [t1, t2] from [1]
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C1,1

C4,1

C3,1C2,1

C1,3

C4,3

C3,3C2,3

C1,2

C4,2

C3,2C2,2

C1,4

C4,4

C3,4C2,4

Figure 4.3: An example of the global hierarchy of time-bound WL scheme for time
period [1, 4]
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is due to the fact that aggregate keys are just equivalent to some authorized set of

assigned keys, it is impossible to get any more from them. The derivation of the

security analysis propositions can be found in [14].

4.8 Performance Analysis

The main advantage of the WL scheme is that the CA only needs to transmit one

single aggregate key I(i, T ) to a user of class Ci whose length is as long as the public

parameter N indenendent of the number of time slots T . To optimize complexity-

memory-time tradeoff, the CA might choose to store N , g, all public primes and the

assigned keys for the current time slot. The term ϕ
′

denotes the average bit length

of a public prime in the WL scheme where,

ϕ
′
= mzlog2(mz) (4.16)

m denotes the number of classes in the global hierarchy and z represents the time

period. In most applications, z is much larger than m. |N | denotes the bit length N.

The term |T | denotes the number of time slots in T . The term αi denotes the number

of classes lower than or equal to class Ci in the hierarchy, i.e., αi = |{Cj : Cj � Ci}|.

Given this information, the CA’s computation requirement of each assigned key and

aggregate key is equivalent to one modular exponentation. Similarly, the computation

required by each user to derive an assigned key from an aggregate key is one modular

exponentiation. If the CA computes all assigned keys from a given time slot, it can

derive them in an iterative fashion to speed up computation. It first computes the

assigned key of the root class in the hierarchy and then computes those of the child
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classes. With the keys for the child classes, it can then compute the keys for the lower

classes using the derived child keys.

Tables 4.1 and 4.2 provide a summary of the storage and computation require-

ments needed by WL scheme.

Item Storage(bits)

CA
N , g, public and secret parameters 2 |N |+ (mzϕ

′
)

Encryption keys (current time period) m · |N |
Users (of class Ci) I(i, T ), N and public parameters 2 · |N |+ (αi + |T |)ϕ′

Table 4.1: Storage Requirement for Wang and Laih (WL) scheme

Item # of modular mult.

CA
Per encryption key in average 1.5ϕ

′
z

A user key I(i, T ) 1.5ϕ
′
(mz − αi |T |)

Adding a time interval to a user key I(i, T ) 0.5 αiϕ
′

+ 1.5|N |
Users (of class Ci) A key derivation: from I(i, T ) to Kκ,τ 1.5ϕ

′
(αi |T | − ακ)

Table 4.2: Computational Complexity for WL scheme
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CHAPTER 5

YEH-SHYAM SCHEME

The YS scheme is a recently proposed time-bound key assignment scheme.

5.1 Initialization and Setup

1. The CA chooses two large secret primes p and q, and computes N = pq and

φ(N) = (p− 1)(q − 1).

2. For each security class Ci, the CA chooses a distinct prime eCi which is relatively

prime to φ(N). The CA then determines the multiplicative inverse dCi for each

eCi(mod φ(N)), i.e., eCidCi = 1(mod φ(N)) for 1 ≤ i ≤ m.

3. For each interval t, the CA chooses another distinct prime et which is relatively

prime to φ(N). Then it determines the multiplicative inverse dt for each et ·

mod(φ(N)), i.e., etdt = 1(mod φ(N)) for 1 ≤ t ≤ z.

4. The CA chooses an integer g ∈ ZN as a base modulo N .

5. LetD = {dC1 , dC2 , . . . dCm , d1, d2, . . . dz} and E = {eC1 , eC2 , . . . , eCm , e1, e2, . . . , ez}.

The CA only publishes the parameters in E and the product N . All other

parameters will be kept secret.
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5.2 The New Merge Function

Based on Fermat’s Little Theorem, for each i ∈ [1, u], we have

gdiei = gdiei(mod φ(N)) = g(mod N) (5.1)

Note that each parameter in both D and E has an identity so that, given an

identity of a parameter di ∈ D, even if the value of di is unknown (since it is a secret

parameter), the identity of the corresponding parameter ei ∈ E can be identified, as

well as ei’s value can be retrieved. For simplicity, let {z1, z2, · · · , zk}(mod N) denote

the set {z1(mod N), z2(mod N), · · · , zk(mod N)}. The following define the merge

function, please refer to [16] for further details.

Definition 1. Given a modulus N = pq, a base g ∈ ZN and a set D of u secret

parameters as defined above, let S = {gx1 , gx1 , · · · , gxw}(mod N) denote a set of w

integers, where, for each i ∈ [1, w], xi is a product of some integers in D. That is, if

xi = di1 , di2 , · · · , dik , let FD(xi) = {di1 , di1 , · · · , dik} denote the factors of xi in D.

Definition 2. Given a set of integers S = {gx1 , gx2 , · · · , gxw}(mod N) as in

definition 1, define R(S) ⊆ D as follows: R(S) = FD(x1) ∪ FD(x2) ∪ · · · ∪ FD(xw).

Definition 3. Given a set of integers R(S) ⊆ D as in definition 2, let R′(S) ⊆ E

denote the corresponding set of integers to R(S). That is, for each parameter d ∈

R(S), there is one and only one parameter e ∈ R′(S) such that gde ≡ g(mod N) for

any g ∈ ZN .

Definition 4. Given a modulus N = pq and a base g ∈ ZN , with a set of integers

S = {gx1 , gx1 , · · · , gxw} (mod N) as in definition 1, the merge function Mg,N(S) is

defined as:
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Mg,N(S) = g(
∏
d∈R(S) d)(mod N) (5.2)

For example, if S =
{
gd1d2 , gd2d3 , gd3d4 , gd1d4

}
(mod N), thenMg,N(S) = g

∏
d∈R(S)d =

gd1d2d3d4(mod N) where R(S) = FD(d1d2) ∪ FD(d2d3) ∪ FD(d3d4) ∪ FD(d1d4) =

{d1, d2} ∪ {d2, d3} ∪ {d3, d4} ∪ {d1, d4} = {d1, d2, d3, d4}. If S is a set of keys, then

the above merge function merges them together into a single aggregate key, and each

individual key can be retrieved from the aggregate key. In the example, the key

gd1d2(mod N) can be retrieved by computing

(Mg,N(S))e3e4 ≡ (gd1d2d3d4)e3e4 ≡ gd1d2(mod N) (5.3)

The proofs for the propositions can be found in [16].

Proposition 1. Let S1 and S2 be two integers as in definition 1. Given only

the identities of parameters in sets R(S1) and R(S2), Mg,N(S1) can be derived from

Mg,N(S2) if S1 ⊆ S2 (or more specifically Mg,N(S1) can be derived from Mg,N(S2) if

R(S1) ⊆ R(S2)).

Proposition 1 shows than an aggregate key merged from a set of keys S1 can

be derived from its super-aggregate key merged from another set of keys S2, where

S1 ⊆ S2.

Definition 5. Let S1 and S2 be two sets of integers as in definition 1. If R(S1) ⊆

R(S2), then Mg,N(S2) is a super-aggregate key of Mg,N(S1) or equivalently Mg,N(S1)

is a sub-aggregate key of Mg,N(S2).

Proposition 2. Let r be a positive integer. Given sets S, S1, S2, · · · , Sr as

defined in definition 1, where S = S1 ∪ S2 ∪ · · · ∪ Sr, then Mg,N(S) =

Mg,N(Mg,N(S1),Mg,N(S2), · · · ,Mg,N(Sr)).

Proposition 2 indicates that an aggregate key can be merged directly from a set
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of primitive keys or can be merged from a set of sub-aggregate keys. It also shows

that an aggregate key will not be changed by merging duplicate keys.

5.3 Encryption Key Generation

There is a primitive key K
′
j,t (not a real key) assigned to each class Cj,t, where

K
′

j,t = gdcj ·dt(mod N) (5.4)

The CA assigns an aggregate key Ki,t as an encryption key for each class Ci in

each time interval t, where

Ki,t = g

(∏
cj�ci

dcj

)
dt(mod N) (5.5)

Equation 5.5 is based on the merge concept, whereKi,t is the merge of the primitive

keys in Si,t, that is

Ki,t = Mg,N (Si,t) (5.6)

where

Si,t =
{
K
′

j,t : Cj � Ci

}
(5.7)

since

Mg,N (Si,t) = g

(∏
d∈R(Si,t)

d

)
(mod N) = g

(∏
Cj�Ci

dCj

)
dt(mod N) (5.8)
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5.4 User Registration

When a user is assigned to class Ci for a set of time interval T , the CA gives the user

an aggregate key I(i, T ) as a user key, where

I(i, T ) = g

(∏
Cj�Ci

dCj ·
∏
t∈T dt

)
(mod N) (5.9)

Again, the aggregate key I(i, T ) is a merge of the primitive keys in Si,T , that is,

I(i, T ) = Mg,N (Si,T ) (5.10)

where

Si,T =
{
K
′

j,t : Cj � Ci and t ∈ T
}

(5.11)

since

Mg,N (Si,T ) = g

(∏
d∈R(Si,T )

d

)
(mod N) = g

(∏
Cj�Ci

dCj ·
∏
t∈T dt

)
(mod N) (5.12)

Note that the aggregate key I(i, T ) can be expressed as

I(i, T ) = Mg,N (Ki,t : t ∈ T ) (5.13)

since according to Proposition 2,

Mg,N (Ki,t : t ∈ T ) = Mg,N (Mg,N (Si,t) : t ∈ T ) = Mg,N (Si,t : t ∈ T ) = Mg,N (Si,T )

(5.14)
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5.5 Key Derivation

A user who is in class Ci for a set of time intervals T can use the assigned user

key I(i, T ) to derive an encryption key Kκ,τ of class Cκ in time interval τ if Cκ �

Ci and τ ∈ T . If Cκ � Ci and τ ∈ T , then Sκ,τ =
{
K
′
j,τ : Cj � Cκ

}
⊆ Si,T ={

K
′
j,t : Cj � Ci, t ∈ T

}
and thus, by proposition 1, the key Kκ,τ can be derived from

the user key I(i, T ). To derive the key one needs to perform the following modular

exponentiation:

I(i, T )

(∏
e∈R′(Si,T )−R′ (Sκ,τ )

e

)
(mod N) (5.15)

which is equivalent to

I(i, T )

(∏
Cj�Ci,Cj�Cκ

eCj ·
∏
t∈T,t 6=τ et

)
(mod N) (5.16)

5.6 Example

Let us refer to the hierarchy in Figure 4.3, there are 4 classes and the time is divided

into 4 intervals. There are 2(m+ z) = 16 pairs of parameters

(dc1 , ec1), · · · , (dc4 , ec4), (d1, e1), · · · , (d4, e4). Suppose the CA authorizes a user the

access right of C2 for time interval 2 and time interval 4. The CA assigns the user a

user key I(2, {2, 4}), where,

I(2, {2, 4}) = g
(
∏
cj�c2

dcj ·
∏
t∈T dt)(mod N) = gdc2dc4d2d4(mod N)

If the user wants to derive an encryption K4,4, the user would compute

I(2, {2, 4})ec2e2(mod N) = K4,4.
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5.7 Security Analysis

We will briefly provide the security analysis of our scheme, detailed information can

be found in [16]. Let us consider a scenario if the public parameters are not relatively

prime to each other, then it is possible to have two classes Ci and Cj such that Ci � Cj

and Cj’s public parameter ecj is a multiple of Ci’s public parameter eci . This scenario

is not valid in our scheme due to the fact that all public parameters are primes, which

ensures that they are not divisible by one another. The following two propositions

show other basic security properties of our scheme.

Proposition 3. In our scheme, without knowing the secret parameters, it is not

feasible to merge a set of keys if none of the keys is a super-aggregate key of all other

keys in the set.

Proposition 4. In our scheme, without knowing the secret parameters, a key

can be feasibly derived if and only if any of its super-aggregate keys is known.

Proposition 5. In our scheme, it is feasible for a user with a user key I(i, T ) to

derive an encryption key Kκ,τ if and only if Cκ � Ci and τ ∈ T .

Proposition 6. In our scheme, if it is feasible to derive Kκ,τ from aggregate keys

I(i1, T1), I(i2, T2), · · · , I(ir, Tr), where r is a positive integer, then there is at least one

ρ ∈ [1, r] such that Cκ � Ciρ and τ ∈ Tρ.

5.8 Performance Analysis

5.8.1 Storage Requirements

A pair of public and secret parameters are assigned to each class and to each time

interval. There are m + z pairs of parameters. Public parameters are selected from

a sequence of prime numbers starting with 3. Primes in the sequence which are not
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relatively prime to φ(N) are skipped. The advantage of picking small primes is that

it not only reduces the storage requirements but also increases the key derivation

efficiency. We make the assumption that the n-th public parameter is approximately

the same as the n-th prime. secret parameters are multiplicative inverses of the public

parameters (mod φ(N)) and are normally the size of N denoted as |N |. Hence the

storage requirement for secret parameters is (m + z)|N | bits. The CA only stores

the encryption keys of the current time interval. All aggregate keys including the

encryption keys and user keys are of size |N |. Thus m current encryption keys need

|N | bits. Table 5.1 summarizes the storage requirement for the CA and users for

our scheme. The term αi denotes the number of classes lower than or equal to class

Ci in the hierarchy, i.e., αi = |{Cj : Cj � Ci}|. The term |T | denotes the number

of time intervals in T . The term ϕ denotes the average bit length of a public prime

in our scheme, i.e., ϕ
′

= mϕ. In most applications, z is much larger than m. Thus,

the average size of a public prime in the WL scheme is about m times longer than

the average size of a public parameter in our scheme. For systems with very small

number of classes and time intervals, the CA in our scheme may require more storage.

When the number of classes m or the number of time intervals z grows, the storage

requirement in our scheme will grow much slower than in the WL scheme. The CA

storage requirement in our scheme is about O(1/m2) fraction of those in the WL

scheme.

Item Storage(bits)

CA
N , g, public and secret parameters (m+ z + 2) |N |+ (m+ z)ϕ
Encryption keys (current time period) m · |N |

Users (of class Ci) I(i, T ), N and public parameters 2 · |N |+ (αi + |T |)ϕ

Table 5.1: Storage Requirement for the proposed Yeh-Shyam (YS) scheme
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5.8.2 Computational Complexity

The initialization step is a one time process which involves assigning parameters

followed by encryption and user key generation or modification. The key generation

and modification can be handled on the fly. For the initialization step, the YS

scheme requires to identify (m+ z) primes and computes their multiplicative inverses

(mod φ(N)). It requires (m + z)ϕ divisions to compute all m + z multiplicative

inverse d’s. As compared to YS scheme, the WL scheme does not require computing

the multiplicative inverse in the initialization step. However, the WL scheme requires

mz primes which is more than m+ z primes needed by the YS scheme. Identifying a

large prime e is much more difficult than computing the multiplicative inverse d of e.

Thus the YS scheme is more efficient than WL scheme during the initialization step.

The key generation and modification in the YS scheme is nothing but a modular

exponentiation. The key derivation from a user key to an encryption key is also a

modular exponentiation. The average number of modular multiplications to compute

a modular exponentation with an exponent is about 1.5x (bit length of the exponent).

To assign all encryption keys for a time interval, the CA computes the keys in a

top-down fashion. Then CA first computes the encryption key of the root class and

then computes the encryptions keys for all other classes in a level-order sequence.

The computation of the encryption key for the root class is the most expensive

process since the exponent of the modular exponentiation is a product of m + 1

secret parameters. That is, the size of the exponent is (m+ 1)|N |. Thus, the number

of required modular multiplications to compute the root’s encryption key is about

1.5(m + 1)|N |. It requires about 1.5mϕ modular multiplications to compute all

remaining encryption keys in the hierarchy. On average, about 1.5(|N |+ϕ) modular
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multiplications are required to compute each encryption key.

The CA computes the user key I(i, T ) by taking advantage of some existing

encryption keys. First, the CA chooses an already assigned encryption key Ki,τ where

τ ∈ T . It takes about 1.5|N ||T | modular multiplications to compute I(i, T ) [16].

On the other hand, a user who has access to a user key I(i, T ) will be able to

compute an encryption key Kκ,τ , where Cκ � Ci and τ ∈ T . The number of modular

multiplications required for a key derivation is approximately 1.5ϕ(αi−ακ + |T | − 1)

where αi− ακ is the number of classes lower than or equal to Ci but higher than Cκ.

Table 5.2 summarizes the computational complexity for the YS scheme.

Item # of modular mult.

CA
Per encryption key (in average) 1.5(|N |+ ϕ)
A user key I(i, T ) 1.5|N | |T |
Adding a time interval to a user key I(i, T ) 1.5|N |

Users (of class Ci) A key derivation: from I(i, T ) to Kκ,τ 1.5ϕ(αi − ακ + |T | − 1)

Table 5.2: Computational Complexity for the proposed Yeh-Shyam (YS) scheme
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CHAPTER 6

SETUP, ANALYSIS AND RESULTS

6.1 Implementation Overview

The WL and YS schemes have been implemented using the JavaTM Programming

language specifically version 1.6. The Java platform provides a number of classes

which provide support for cryptography, public key infrastructure (PKI), authentica-

tion, secure communication and access control. The Java Cryptography Architecture

(JCA) is a core piece of the platform and contains ”provider” architecture and a set of

public accessible API’s for digital signatures, hashs or message digests, certificates and

certificate validation, encryption (symmetric, asymmetric both for block and stream

ciphers), key generation and management and secure random number generation to

name a few. For researchers in the cryptology field, these API’s allow developers

to easily design, integrate, re-use and call security API’s from their application level

programs with minimal custom extensions. Some of the Java classes which are core

to this project include:

• java.math.BigInteger class provides methods which allow developers to com-

pute operations such as two’s-complement, modular arithmetic, GCD calcula-

tion, primality testing, prime number generation, bit manipulation and other

miscellaneous operations.
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• java.security.SecureRandom class provides a cryptographically strong ran-

dom number generator. SecureRandom produces non-deterministic output and

therefore any seed passed to a SecureRandom object must be unpredictable and

all output sequences are cryptographically strong.

• java.security.KeyPair class is a simple holder for a key-pair (a public key

and a private key) and does not enforce any security when initialized.

• java.security.KeyPairGenerator class is used to generate pairs of public and

private keys for common algorithms such as RSA, DSA, etc.

• java.security.KeyPairGeneratorSpi defines a Service Provider Interface (SPI)

for KeyPairGenerator class which is used to create custom pairs of public and

private keys. All abstract methods must be implemented by each cryptographic

service provider who wishes to supply the implementation of a key pair generator

for a particular algorithm. The default modulus size (keysize) is 1024 bits.

6.2 Tools and Methodology

The following is the list of software packages used in the design and implementation

of WL and YS schemes as well as documentation of this project:

• JavaTM JDK 6 Update 16 with NetBeansTM 6.7.1: This distribution of the

JDK includes the NetBeans IDE which is a powerful integrated development

environment for developing applications in the Java platform.

• JavaTM Platform Standard Edition 6 API Specification

• TeXnicCenter: A feature rich easy to use IDE for creating LaTeX documents

on the Windows platform
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• MiKTeX: An up-to-date implementation of TeX and related programs for Win-

dows

• A PC running VistaTM operating system using IntelTM processor with 2G RAM

• Microsoft Office 2007 Application suite specifically Excel and Powerpoint

The common four high level steps which captures the essence of WL and YS

scheme are initialization, encyption key generation, user registration and key deriva-

tion. Appendix A describes the object oriented design details of the Java classes

which were created namely AklTaylor, WangLaih, YehShyam, StopWatch, RSA and

the core driver class called Main. The Main driver allows the user to input bit length

which is used by the random number generator, the number of classes in a hierarchy as

well as the time period. Experiments were conducted by varying these three vectors

with the analysis provided in the following sections.

6.3 Storage Requirement Analysis

Tables 6.1, 6.2, 6.3 and 6.4 provides a summary of the storage requirements captured

upon executing WL and YS schemes. In our examples below, we increase the time

interval z = 4, 100, 500 and 1000. As expected, the storage requirement for WL

scheme grows much faster than the YS scheme. For systems with very small number

of time interval z = 4, we validated that the CA in the YS scheme indeed requires

more storage than WL scheme. We needed 173 bits for YS scheme versus 96 bits

for WL scheme for N , g and public primes. From a theoretical perspective, we only

compare the dominant terms (m+ z)ϕ and mzϕ′ in both schemes. The CA’s storage

requirement in the YS scheme is about O(1/m2) fraction of those in the WL scheme.
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Item WL (bits) YS (bits)

CA
N , g, public and secret parameters 96 173
Encryption keys 148 162

Users (of class Ci) I(i, T ), N and public parameters 103 66

Table 6.1: Storage bits measured for m = 4 and z = 4

Item WL (bits) YS (bits)

CA
N , g, public and secret parameters 4119 2321
Encryption keys 4290 4247

Users (of class Ci) I(i, T ), N and public parameters 4125 870

Table 6.2: Storage bits measured for m = 4 and z = 100

Item WL (bits) YS (bits)

CA
N , g, public and secret parameters 25827 12881
Encryption keys 20920 22589

Users (of class Ci) I(i, T ), N and public parameters 25833 5402

Table 6.3: Storage bits measured for m = 4 and z = 500

Item WL (bits) YS (bits)

CA
N , g, public and secret parameters 56316 25540
Encryption keys 44212 42223

Users (of class Ci) I(i, T ), N and public parameters 56321 11848

Table 6.4: Storage bits measured for m = 4 and z = 1000
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6.4 Performance Analysis

Figures 6.1 to 6.6 provides a summary of the performance requirements captured

upon executing WL and YS schemes. Figures 6.1 to 6.5 compare the time needed to

perform the initialization step. We varied the time period z values as 4, 10, 50 and

100 but kept m = 4 constant. In the second case, we varied the number of classes m

with values 4, 8 and 16 and kept z = 4 constant. As evident from the figures, the

WL scheme was much slower than YS scheme during the initialization step. This is

due to the fact that the number of classes and time period was varied, the YS scheme

requires 2(m + z) parameters versus mz parameter required by WL scheme. This

mapped to the CA generating more prime numbers for the WL scheme during the

initialization step. Other common initialization parameters such as p, q, N and g

required the same amount of time to generate. For the YS scheme, the initialization

step involved computing modular inverse of the generated prime numbers.

Fig 6.6 depicts all the four steps - initialization, encryption key generation, user

registration and key derivation with z = 4 and a bit length of 1024 bits. In the top

figure, Y-axis represents the computation time (in millisecs) for each of the four steps

and in the bottom figure, we have represented the logarithm of the computation time.

The experimental data is captured in Appendix A. As noted, the computation time

for the initialization step was higher for WL scheme and increased with the number

of classes m. The computation time needed to generate encryption keys was almost

the same for both WL and YS schemes. The time for computing user registration

shows an increasing trend for WL scheme. The computation time for key derivation

was comparable for both WL and YS schemes.
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Figure 6.1: Comparison of Initialization step at bit length = 8. In the top figure, m
= 4 while the number of time intervals was varied. In the bottom figure, z = 4 and
the number of classes was varied
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Figure 6.2: Comparison of Initialization step at bit length = 16. In the top figure, m
= 4 while the number of time intervals was varied. In the bottom figure, z = 4 and
the number of classes was varied
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Figure 6.3: Comparison of Initialization step at bit length = 32. In the top figure, m
= 4 while the number of time intervals was varied. In the bottom figure, z = 4 and
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CHAPTER 7

CONCLUSIONS

The time bound hierarchical key assignment first studied by Tzeng in 2002 was

intended to solve the access control problem in a partially ordered hierarchy with

time-dependent keys. Following Tzeng’s scheme [13], two alternative schemes in [5]

and [2] were proposed in 2004. Unfortunately, all of the above schemes have been

proven insecure against collusive attacks in [17], [18]. In 2006, Wang and Laih

proposed a new scheme [14] which applies Akl and Taylor’s key assignment scheme [1]

to a global hierarchy. The global hierarchy consists of z separate sub-hierarchies, one

for each time interval. They also introduced the concept of merging. Any assigned

key is just a merge, or in other words, a compression of a set of primitive keys such

that the assigned key is able to recover any of its constituent primitive keys. We have

defined our scheme also called the Yeh-Shyam scheme [16] including defining a new

merge function. Our scheme requires less storage and performs better than the WL

scheme.

This project has met all its goals:

• Described the theory and design steps for the two schemes

• Implemented the two schemes using the Java Programming language to generate

the time-sensitive keys for a number of classes
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• Measured the performance metrics of the two schemes, specifically storage and

performance complexity

7.1 Recommendations for Future Research

This section points out few aspects of the theory and implementation which demand

future research.

1. Perform cryptoanalysis of the Wang Laih scheme.

2. Implement, analyze and compare the performance of WL and YS scheme when

classes are added and deleted at various places in the global hierarchy. There are

specific procedures described in [16] related to addition and deletion of classes

which can be implemented.

3. Implement the YS scheme in a real world scenario such as a client-server

application.
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APPENDIX A

EXPERIMENTAL DATA
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Bit Length m z Initialization
8 4 4 20
8 4 10 25
8 4 50 59
8 4 100 102
8 8 4 54
8 16 4 60
16 4 4 18
16 4 10 22
16 4 50 99
16 4 100 140
16 8 4 25
16 16 4 26
32 4 4 10
32 4 10 23
32 4 50 58
32 4 100 126
32 8 4 46
32 16 4 52
1024 4 4 24
1024 4 10 45
1024 4 50 225
1024 4 100 317
1024 8 4 33
1024 16 4 72
2048 4 4 18
2048 4 10 39
2048 4 50 365
2048 4 100 575
2048 8 4 33
2048 16 4 72

Table A.1: WL Computation Time (in millisecs) for Initialization step in Figs 6.1-6.5

m Initialization Encryption Keys User Registration Key Derivation
4 317 17580 326 3
8 606 35773 726 2
16 887 36230 1605 2

Table A.2: WL Computation Time (in millisecs) with bit length = 1024 where z =
100 for data in Fig 6.6
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Bit Length m z Initialization
8 4 4 4
8 4 10 4
8 4 50 20
8 4 100 22
8 8 4 6
8 16 4 5
16 4 4 7
16 4 10 4
16 4 50 15
16 4 100 53
16 8 4 3
16 16 4 7
32 4 4 4
32 4 10 7
32 4 50 14
32 4 100 44
32 8 4 10
32 16 4 6
1024 4 4 113
1024 4 10 134
1024 4 50 208
1024 4 100 289
1024 8 4 133
1024 16 4 155
2048 4 4 121
2048 4 10 194
2048 4 50 236
2048 4 100 289
2048 8 4 133
2048 16 4 155

Table A.3: YS Computation Time (in millisecs) for Initialization step in Figs 6.1-6.5

m Initialization Encryption Keys User Registration Key Derivation
4 289 17583 678 2
8 330 35696 861 3
16 327 36168 860 4

Table A.4: YS Computation Time (in millisecs) with bit length = 1024 where z =
100 for data in Fig 6.6
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APPENDIX B

PACKAGE RSA

Package Contents Page

Classes

AklTaylor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

This class implements the Akl Taylor key generation scheme

Main . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
Main driver class which is entry point for users who exercise the key

generation algorithms.
RSA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

This class implements the RSA encryption and decryption technique

StopWatch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
The StopWatch class provides methods which will be used as a wrapper

to measure the execution time for key generation algorithms.
WangLaih . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

This class implements the Wang-Laih (WL) key generation scheme

YehShyam . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

This class implements the Yeh-Shyam (YS) key generation scheme
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B.1 Classes

B.1.1 Class AklTaylor

This class implements the Akl Taylor key generation scheme

Declaration

public class AklTaylor

extends java.lang.Object

Constructors

• AklTaylor

public AklTaylor( int bitlen, int class size )

– Usage

∗ This is the constructor where we instantiate objects and allocate

memory for p, q, N, g, e, K

– Parameters

∗ bitlen - is input to generate keys for the passed bit lengths

∗ class size - is the hierarchical depth

Methods
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• displayKeys

public void displayKeys( )

– Usage

∗ displayKeys is a method which displays all the keys scheme

• displayValue

private String displayValue( java.math.BigInteger val )

– Usage

∗ displayValue method displays the value of a selected key as a string

– Parameters

∗ val - is the key value

• generateKeys

public void generateKeys( )

– Usage

∗ generateKeys is the method which is called by the Central Authority

to generate keys

• generateKeysFrom

public void generateKeysFrom( int source, int destination )

– Usage

∗ generateKeysFrom method generates a key for a class lower in the

hierarchy from a key higher in the class hierarchy
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– Parameters

∗ source - is a class in the hierarchy which is above the class for which

the key needs to be calculated

∗ destination - is the class for which the key is calculated using the

key of a class which is higher in the hierarchy

• setSize

private void setSize( int class size )

– Usage

∗ setSize method is a private method which copies the user input class

size to an internal variable

– Parameters

∗ class size - is the number of classes in the hierarchy

B.1.2 Class Main

Main driver class which is entry point for users who exercise the key generation algorithms.

Declaration

public class Main

extends java.lang.Object

Constructors
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• Main

public Main( )

Methods

• main

public static void main( java.lang.String [] args )

– Usage

∗ Main method which instantiates various objects which are the Key

Generation schemes (WL and YS) and RSA Cryptographic

Encryption/Decryption Algorithm.

– Parameters

∗ args - the command line arguments

B.1.3 Class RSA

This class implements the RSA encryption and decryption technique

Declaration

public class RSA

extends java.lang.Object

Fields
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• private BigInteger n

–

• private BigInteger d

–

• private BigInteger e

–

Constructors

• RSA

public RSA( int bitlen )

– Usage

∗ This is constructor for the RSA class

– Parameters

∗ bitlen - is the bit length at which the RSA scheme is executed

Methods

• decrypt

public BigInteger decrypt( java.math.BigInteger message )

– Usage

∗ Decrypt method will decrypt the message which is passed to it

– Parameters
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∗ message - is the data which needs to be decrypted

– Returns - Decrypted message in BigInteger format

• encrypt

public BigInteger encrypt( java.math.BigInteger message )

– Usage

∗ Encrypt method will take an ASCII message and encrypt it

– Parameters

∗ message - is the ASCII data which needs to be encrypted

– Returns - Encrypted message in BigInteger format

• toString

public String toString( )

– Usage

∗ This method prints the public and private information to the screen

– Returns - Returns the concatenated string

B.1.4 Class StopWatch

The StopWatch class provides methods which will be used as a wrapper to measure the

execution time for key generation algorithms.
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Declaration

public class StopWatch

extends java.lang.Object

Fields

• private long startTime

–

• private long stopTime

–

• private boolean running

–

Constructors

• StopWatch

public StopWatch( )

Methods

• getElapsedTimeInMilliSecs

public long getElapsedTimeInMilliSecs( )
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– Usage

∗ The getElapsedTime method calculates the elapsed time by taking

the difference between the end time and the start time.

– Returns - Returns the elapsed time in milli seconds

• getElapsedTimeSecs

public long getElapsedTimeSecs( )

– Usage

∗ The getElapsedTime method calculates the elapsed time by taking

the difference between the end time and the start time.

– Returns - Returns the elapsed time in seconds

• start

public void start( )

– Usage

∗ The start method synchronizes with the system clock and gets the

clock counting.

• stop

public void stop( )

– Usage

∗ The stop method notes the end time and stops the stop watch from

running further.



63

B.1.5 Class WangLaih

This class implements the Wang-Laih (WL) key generation scheme

Declaration

public class WangLaih

extends java.lang.Object

Fields

• private int bit length

–

• public BigInteger N

–

• private BigInteger p

–

• private BigInteger q

–

• private BigInteger g

–
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• public BigInteger epsilon

–

• private BigInteger e

–

• private BigInteger bigE

–

• public BigInteger K

–

• private BigInteger Kprime

–

• public int size

–

• public int duration

–

• private BigInteger alpha

–

• private int class rank

–

• private BigInteger bigI

–
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• private BigInteger bigK

–

• private BigInteger E alpha

–

• private int p size

–

• private int q size

–

• private int N size

–

• private int g size

–

• private int bigI size

–

• private int bigK size

–

• private int Kprime avg size

–

• private int K avg size

–
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• private int epsilon avg size

–

• private int e avg size

–

Constructors

• WangLaih

public WangLaih( int bitlen, int class size, int

time duration, boolean isDebug )

– Usage

∗ This is the constructor where we instantiate objects and allocate

memory for p, q, N, g, e, K and Kprime

– Parameters

∗ bitlen - is input to generate keys for the passed bit lengths

∗ class size - is the hierarchical class depth

∗ time duration - is the time duration

∗ isDebug - enables the global debug flag

Methods

• displayKeys

public void displayKeys( )

– Usage
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∗ displayKeys is a method which displays all the keys generated by

Wang Laih scheme

• displayValue

private String displayValue( java.math.BigInteger val )

– Usage

∗ displayValue method displays the value of a selected key as a string

– Parameters

∗ val - is the key value

– Returns - Returns the string value of val

• generateEncryptionKeys

private void generateEncryptionKeys( )

– Usage

∗ generateEncryptionKeys is the method which is called by the Central

Authority to generate encryption keys. This method uses the WL

merge technique to merge the primitive keys of classes in the

hierarchy to generate the aggregate key.

• generateKeys

public void generateKeys( )

– Usage

∗ generatKeys is the method which is called by the Central Authority

to generate Wang Laih private key methods
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• generatePrimitiveKeys

private void generatePrimitiveKeys( )

– Usage

∗ generatePrimitiveKeys method executes the steps to generate

primitive keys

• keyDerivation

private void keyDerivation( int which class, int time slot )

– Usage

∗ keyDerivation is the method which is called by the Central Authority

to derive keys

– Parameters

∗ which class - is the class for which key needs to be derived

∗ time slot - is the time slot for which key needs to be derived

• setBitLength

private void setBitLength( int bitlen )

– Usage

∗ setBitLength method is a private method which copies the user bit

length to an internal variable

– Parameters

∗ bitlen - is the bit length
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• setDebugFlag

private void setDebugFlag( boolean isDebug )

– Usage

∗ setDebugFlag enables/disables global debug flag for WL scheme.

– Parameters

∗ isDebug - is the debug flag passed by the main class.

• setDuration

private void setDuration( int time duration )

– Usage

∗ setDuration method is a private method which copies the user input

time duration to an internal variable

– Parameters

∗ time duration - is the number of time slots

• setSize

private void setSize( int class size )

– Usage

∗ setSize method is a private method which copies the user input class

size to an internal variable

– Parameters

∗ class size - is the number of classes in the hierarchy
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• userRegistration

private void userRegistration( int which class, int t from, int

t to )

– Usage

∗ userRegistration is the method which is called by the Central

Authority to calculate user registrations I(i,T). If a user is assigned

to a class Ci for a set of time intervals T, the CA gives the user an

aggregate key I(i,T) as a user key by computing I(i,T)

– Parameters

∗ which class - is the class for which user registration needs to be

computed

∗ t from - is the time slot to start

∗ t to - is the time slot to end

B.1.6 Class YehShyam

This class implements the Yeh-Shyam (YS) key generation scheme

Declaration

public class YehShyam

extends java.lang.Object

Fields
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• private int bit length

–

• public BigInteger N

–

• private BigInteger p

–

• private BigInteger q

–

• private BigInteger g

–

• private BigInteger phi N

–

• private BigInteger ec

–

• private BigInteger dc

–

• private BigInteger et

–

• private BigInteger dt

–
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• public BigInteger epsilon

–

• private BigInteger e

–

• private BigInteger bigE

–

• public BigInteger K

–

• private BigInteger Kprime

–

• public int size

–

• public int duration

–

• private BigInteger alpha

–

• private int class rank

–

• private BigInteger bigI

–
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• private BigInteger bigK

–

• private BigInteger E alpha

–

• private int p size

–

• private int q size

–

• private int N size

–

• private int g size

–

• private int bigI size

–

• private int bigK size

–

• private int Kprime avg size

–

• private int K avg size

–
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• private int ec avg size

–

• private int dc avg size

–

• private int et avg size

–

• private int dt avg size

–

Constructors

• YehShyam

public YehShyam( int bitlen, int class size, int

time duration, boolean isDebug )

– Usage

∗ This is the constructor where we instantiate objects and allocate

memory for p, q, N, g, e, K and Kprime

– Parameters

∗ bitlen - is input to generate keys for the passed bit lengths

∗ class size - is the hierarchical class depth

∗ time duration - is the time duration

∗ isDebug - enables/disables the global debug flag
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Methods

• displayKeys

public void displayKeys( )

– Usage

∗ displayKeys is a method which displays all the keys generated by YS

scheme

• displayValue

private String displayValue( java.math.BigInteger val )

– Usage

∗ displayValue method displays the value of a selected key as a string

– Parameters

∗ val - is the key value

– Returns - String for val in string format

• generateEncryptionKeys

private void generateEncryptionKeys( )

– Usage

∗ generateEncryptionKeys is the method which is called by the Central

Authority to generate encryption keys. This method uses the YS

merge technique to merge the primitive keys in a class hierarchy to

generate the aggregate keys.
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• generateKeys

public void generateKeys( )

– Usage

∗ generateKeys is the method which is called by the Central Authority

to generate Yeh Shyam keys

• generatePrimitiveKeys

private void generatePrimitiveKeys( )

– Usage

∗ generatePrimitiveKeys method executes the steps to generate

primitive keys

• keyDerivation

private void keyDerivation( int which class, int time slot, int

bigi class, int bigi t from, int bigi t to )

– Usage

∗ keyDerivation is the method which is called by the Central Authority

to derive keys

– Parameters

∗ which class - is the class for which key needs to be derived

∗ time slot - is the time slot for which key needs to be derived

∗ bigi class - is the class information from aggregate key

∗ bigi t from - is the starting time slot from aggregate key
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∗ bigi t to - is the ending time slot from aggregate key

• randomModValue

private static BigInteger randomModValue( java.math.BigInteger

t, java.math.BigInteger prev )

– Usage

∗ randomModValue method finds the next prime number to be used in

ec and dc. It ensures that the generated number is prime to phi(N)

– Parameters

∗ t - is phi N

∗ prev - is the previously used prime number in the sequence.

• setBitLength

private void setBitLength( int bitlen )

– Usage

∗ setBitLength method is a private method which copies the user bit

length to an internal variable

– Parameters

∗ bitlen - is the bit length for computation

• setDebugFlag

private void setDebugFlag( boolean isDebug )

– Usage

∗ setDebugFlag enables/disables global debug flag for WL scheme.
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– Parameters

∗ isDebug - is the debug flag passed by the main class.

• setDuration

private void setDuration( int time duration )

– Usage

∗ setDuration method is a private method which copies the user input

time duration to an internal variable

– Parameters

∗ time duration - is the number of time slots

• setSize

private void setSize( int class size )

– Usage

∗ setSize method is a private method which copies the user input class

size to an internal variable

– Parameters

∗ class size - is the number of classes in the hierarchy

• userRegistration

private void userRegistration( int which class, int t from, int

t to )

– Usage
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∗ userRegistration is the method which is called by the Central

Authority to calculate user registrations I(i,T). If a user is assigned

to a class Ci for a set of time intervals T, the CA gives the user an

aggregate key I(i,T) as a user key by computing I(i,T)

– Parameters

∗ which class - is the class for which user registration is performed

∗ t from - is the starting time slot

∗ t to - is the ending time slot


