

AN END-TO-END IDENTITY-BASED EMAIL

ENCRYPTION SCHEME

by

Fiona Yan Lee

A thesis

submitted in partial fulfillment

of the requirements for the degree of

Master of Science in Computer Science

Boise State University

October 2014

c© 2014
Fiona Yan Lee

ALL RIGHTS RESERVED

BOISE STATE UNIVERSITY GRADUATE COLLEGE

DEFENSE COMMITTEE AND FINAL READING APPROVALS

of the thesis submitted by

Fiona Yan Lee

Thesis Title: AN END-TO-END IDENTITY-BASED EMAIL ENCRYPTION SCHEME

Date of Final Oral Examination: 17 October 2014

The following individuals read and discussed the thesis submitted by student Fiona
Yan Lee, and they evaluated their presentation and response to questions during the
final oral examination. They found that the student passed the final oral examination.

Jyh-haw Yeh, Ph.D. Chair, Supervisory Committee

Dianxiang Xu, Ph.D. Member, Supervisory Committee

Jim Buffenbarger, Ph.D. Member, Supervisory Committee

The final reading approval of the thesis was granted by Jyh-haw Yeh, Ph.D., Chair,
Supervisory Committee. The thesis was approved for the Graduate College by John
R. Pelton, Ph.D., Dean of the Graduate College.

dedicated to my husband

iv

ACKNOWLEDGMENTS

I would like to thank my advisor, Dr.Yeh Jyh-haw, for the patient guidance,

encouragement and advice he has provided throughout the times was I working on

my thesis. Many thanks to Dr. Amit Jain who encouraged me to apply, and accepted

me into the master program after I finished my undergraduate degree in computer

science at Boise State University. I also would like to thank my committee members

Dr. Buffenbarger, Dr. Alark Joshi, and Dr. xu, who have approved my thesis proposal

and took time from their busy schedules to read my thesis.

I must express my deepest gratitude to Joey, my husband, for his unconditional

love, continuous support and encouragements. There were times that I thought it is

impossible to continue, and he has made it possible. In the past years, I have spent

countless weekends, evenings doing my schoolwork. To my kids, Justin and Flovia

Lee, I owe them lots and lots of mom-kids times.

Completing my undergraduate and graduate coursework would have been much

more difficult if it was not for the support and friendship provided by my neighbor

Rose Spires. I thank her for taking care of the kids while I was in classes, and being

supportive while I faced other life difficulties.

Finally, I would like to thank my manager at Hewlett Packard company, for giving

me the flexibility to attend classes and meeting with my advisor. I could not have

finished my thesis in time without this flexibility.

v

ABSTRACT

Email has evolved into one of the most important methods of communication for

any individual and organization. It’s amazing how email has transformed our profes-

sional and social life. However, current industry standards do not place emphasis on

email security; most emails are currently transmitted in plain text over the Internet

or other networks. Emails can be intercepted easily by others. Potentially, every

non-encrypted email sent over a network or stored at an email server can be read,

copied or altered. There is a strong need for secure email delivery.

Some email service providers such as Google’s gmail did take some actions to

improve privacy protection based upon https protocol. The main motivation for https

is to prevent wiretapping and man-in-the-middle attacks. It provides authentication

of the gmail website and associated web server that one is communicating with, and it

provides bidirectional encryption of communications between a client computer and

the gmail server. In practice, this is a reasonable guarantee that one is communicating

with precisely the gmail server that one is intended to communicate with, as well

as ensuring that the contents of communications between the user and the gmail

server cannot be read or forged by any third party. However, https only prevents

emails from being sniffed during networking transmission. It does not prevent email

server administrators, or anyone else who can gain access to various email servers

to read the email messages because https is not an end-to-end encryption. There

are end-to-end encryptions available such as PGP(pretty good privacy), it relies on

public-key cryptography, in which users can each publish a public key associated

vi

with a certificate that others can use it to encrypt messages to them, while keeping a

private key as secret that they can use to decrypt such messages. Set-up, maintaining,

publishing own public key and obtaining others’ public key are essential for PGP to

work properly. These tasks make PGP encryption not so easy to use for ordinary

users who do not have a technical background.

This thesis represents an implementation of an end-to-end, identity-based encryp-

tion that can be used to encrypt email massages and attachments. It is end-to-end

which means the originating party encrypting data to be readable only by the intended

recipient. It is identity-based which means the public key of a user is some unique

information about the identity of the user, for instance, the user’s email address.

Because users’ public keys are derived from identifiers, identity-based encryption

eliminates the need for a public key distribution infrastructure.

vii

TABLE OF CONTENTS

ABSTRACT . vi

LIST OF TABLES . xii

LIST OF FIGURES . xiii

LIST OF ABBREVIATIONS . xiv

1 INTRODUCTION . 1

1.1 Problem Context . 1

1.1.1 Https Approach . 2

1.1.2 PGP: An End-to-end Encryption Software 3

1.2 Thesis Statement . 5

2 ASYMMETRIC AND SYMMETRIC CRYPTOGRAPHY 7

2.1 Asymmetric Cryptography . 7

2.2 Symmetric Cryptography . 10

2.2.1 Discrete Logarithm Problem . 10

2.2.2 Diffie-Hellman Key Exchange . 11

2.2.3 Symmetric Encryption Scheme . 13

2.2.4 Mode of Operation . 14

3 ELLIPTIC CURVE AND PAIRING-BASED ENCRYPTION 18

viii

3.1 Prior Research . 18

3.2 Additive and Multiplicative Group . 20

3.3 Overview of Elliptic Curve . 21

3.3.1 Number of Points on Elliptic Curve . 22

3.3.2 Group Operations over Elliptic Groups . 24

3.4 Overview of Bilinear Pairing . 26

3.4.1 Tate Pairing . 28

3.4.2 Using Miller’s Algorithm to Calculate Tate Pairing 29

3.5 Identity-based Encryption Using Pairing . 31

4 AN IDENTITY-BASED ENCRYPTION SYSTEM DESIGN 33

4.1 Elliptic Curve and Pairing Construction . 33

4.1.1 Elliptic Curve Construction . 34

4.1.2 Finding a Random Point on an Elliptic Curve 35

4.1.3 Hashing to Points . 37

4.1.4 Pairing Construction . 37

4.2 Scheme Design . 38

4.3 Key Agreement Protocol Design . 39

4.3.1 Key Agreement for Emails with One Recipient 40

4.3.2 Key Agreement for Group Emails . 41

5 AN IDENTITY-BASED ENCRYPTION SYSTEM IMPLEMEN-

TATION . 47

5.1 Javamail . 47

5.1.1 Session and Properties . 48

5.1.2 Message Class . 49

ix

5.1.3 MIME Type and Multipart Class for Attachments 49

5.2 Date Type and Functions . 50

5.3 Server and Client Algorithems . 51

5.4 Java Projects and Packages . 53

6 PERFORMANCE EVALUATION AND SECURITY ANALYSIS 55

6.1 Performance . 55

6.1.1 Testing Environment . 55

6.1.2 Server Parameter Setup and Master Key Generation 56

6.1.3 Key Pair Generation . 56

6.1.4 Emails with Single Receiver without Attachment 57

6.1.5 Emails with Single Receiver with Attachments 57

6.1.6 Emails with Multiple Receivers . 58

6.1.7 Results Summary . 59

6.2 Security . 60

7 CONCLUSION . 63

REFERENCES . 65

A JAVA SOURCE CODE OF SOME OF THE MAIN ALGORITHMS 69

A.1 Curve and Pairing Functions . 69

A.2 Server Algorithms . 73

A.3 Client Algorithms . 78

A.4 Group Email Algorithms . 79

A.5 Using Java Mail . 81

x

B ADVANCED ENCRYPTION STANDARD ALGORITHM 87

C GUI . 90

C.0.1 User Login Interface . 90

C.0.2 Inbox Interface . 90

C.0.3 Email Compose Interface . 91

C.0.4 Individual Email Message Interface . 92

xi

LIST OF TABLES

6.1 Server Setup Test Results . 56

6.2 Key Pair Generation Test Results . 57

6.3 Test Results for Emails with Single Recipient without Attachment 57

6.4 Test Results for Emails with Single Recipient with Attachments 58

6.5 Test Results for Emails with Two Recipients . 59

6.6 Test Results for Emails with Three Recipients . 59

xii

LIST OF FIGURES

3.1 Special Group Addition Operations . 25

5.1 Javamail Message and Multipart Class Hierarchy 48

xiii

LIST OF ABBREVIATIONS

HTTPS – Hyper Text Transfer Protocol Secure

PGP – Pretty Good Privacy, an Encryption Software

SMTP – Simple Mail Transfer Protocol

ECC – Elliptic Curve Cryptography

IDE – Identity-based Encryption

AES – Advanced Encryption Standard

KGC – Key Generation Center

ID-PKC – Identity-based Public Key Cryptography

xiv

1

CHAPTER 1

INTRODUCTION

1.1 Problem Context

For government agencies or companies with sensitive information being sent or re-

ceived via emails, email security is very important to them. For most of us, the email

messages we send wouldn’t be classified as sensitive but once in a while, sending

sensitive information via emails are necessary such as Social Security or credit card

numbers, bank accounts or earning statements, etc. At such points, we all want to

make sure the content of a message is kept confidential between sender and receiver.

Unfortunately, the standard email messages are sent in plain text which makes it very

attainable for eavesdropping, whether during transmission over networks or when they

are stored on the email servers. There are some approaches have been taken by email

service providers to protect emails from network traffic sniffers such as supporting

https. There also is email encryption software available such as PGP. The downside

of https is it is not end-to-end encryption. Emails are stored in plain text on various

servers, and therefore anyone has gained access to the servers can access your emails.

PGP uses end-to-end encryption, but it requires public key management. In this

case, normal users are often struggling with sharing their own key and obtaining

other people’s public key.

2

1.1.1 Https Approach

Email messages are vulnerable as they travel over the Internet after leaving the email

provider’s server. Bad guys can intercept a message as it bounces from server to server

on the Internet. This hazard typically arises when you use a public network but it can

also be pose problems on your work or private network. In order to prevent network

traffic being sniffed during transmission, emails service providers such as Google’s

gmail supports SSL/TLS on top of http to protect logins credientials, and encrypt the

connection between your computer and the email server. The encryption also takes

place between individual SMTP relays. While https protects network traffic from

being sniffed during transmission, it is technically not encryption of emails because

the content of messages is revealed to, and can therefore be altered by intermediate

email relays. In other words, the encryption is not between the sender and the

recipient. Below steps show how emails travel the Internet, from sender to server,

then bounce between server to server, and finally from server to recipient. Clearly,

https is not end-to-end encryption:

1. Sender to email server: this communication is encrypted based on SSL or TLS

over http. Therefore, it ensures the sender is talking to gmail server and not

anyone else. In addition, the https protocol prevents network sniffing here.

2. Store on email server: once email leaves sender’s computer and arrives on email

server, email server decrypts the communication and stores email in plain text

format.

3. Email bounds between server to server: there can be many other SMTP servers

in between. Again, the communication between server to server might be

encrypted with https but each server can store a plain text copy of email.

3

4. Email server to recipient: finally, when the recipient logs in to read the email,

the email is sent from one of the email servers to recipient using https to encrypt

the communication.

From above illustration, we can see, because emails are stored in plain text on various

servers, server administrators or anyone who can get access to one of the servers can

read private email messages and collect any sensitive, valuable information that it

contains.

1.1.2 PGP: An End-to-end Encryption Software

PGP is an encryption software that does end-to-end encryption. You can use it to

encrypt your emails rendering them unreadable from the point at which they start on

their Internet journey, to the point at which the intended recipient opens them. Your

emails are still copied and saved at various servers along the way but they are in cipher

text format so no one can read them unless the intended recipient decrypts them. PGP

uses a variation of the public key system, also known as asymmetric cryptography.

This requires two separate keys: one of which is secret (or private) that is known only

to the owner, and one of which is public and can be known by everyone. The sender

encrypts a message to someone else using their public key. When the receiver obtains

the message, they decrypt it using their private key. The term ”asymmetric” stems

from the use of different keys to perform encryption and decryption. In contrast,

symmetric-key algorithms variations of which have been used for thousands of years

use a single secret key for both encryption and decryption. Since the public key system

is very time-consuming, and symmetric key algorithms are nearly always much less

computationally intensive than asymmetric ones, PGP combines the convenience of

a public-key cryptosystem with the efficiency of a symmetric-key cryptosystem.

4

PGP uses a faster encryption algorithm (session key) to encrypt the message and

then uses the public key to encrypt the session key that was used to encrypt the

message. Both the encrypted message and the encrypted session key are sent to the

recipient. The recipient who first uses his private key to decrypt the session key and

then uses that key to decrypt the message [1].

To encrypt a message to Alice using PGP, Bob does the following:

1. Obtains Alice’s public key.

2. Generates a fresh, small symmetric key for the data encapsulation scheme.

3. Uses the symmetric key just generated to encrypt the message under the data

encapsulation scheme.

4. Uses Alice’s public key to encrypt the symmetric key under the key encapsula-

tion scheme.

5. Sends both of these encrypted symmetric key and message to Alice.

To decrypt the cipher text, Alice does the following:

1. Uses her private key to decrypt the symmetric key contained in the key encap-

sulation segment.

2. Uses this symmetric key to decrypt the message contained in the data encap-

sulation segment.

The downside of PGP includes:

1. All participants need to have public keys and have made them available to

public.

5

2. It is difficult to find a third party as a certificate authority that everyone trusts.

3. It requires some extra work to keep track of all the valid and revoked certificates

within the certificate authority.

4. It is computational expensive to use public key encryption.

While PGP can protect messages, it can also be hard to use in the correct way.

Researchers at Carnegie Mellon University published a paper in 1999 showing that

most people couldnt figure out how to sign and encrypt messages using the current

version of PGP [4]. Eight years later, another group of Carnegie Mellon researchers

published a follow-up paper saying that although a newer version of PGP made it

easy to decrypt messages, most people still struggled with encrypting and signing

messages, finding and verifying other people’s public encryption keys, and sharing

their own keys [2].

1.2 Thesis Statement

The main objective of this thesis is to design and implement an identity-based cryp-

tography scheme that supports email messages and attachments encryption. It is

end-to-end which means encryption happens at sender’s end and decryption happens

at receiver’s end. Emails are in encrypted form whether during network transmission

or stored at email servers. It is identity-based because one’s public key is based on

their email address so it eliminates the public key publishing and obtaining compared

to the convention public key cryptosystems.

The thesis is organized in the following sections. Chapter 2 gives a brief in-

troduction to the current cryptography systems such as asymmetric and symmetric

6

encryption. It also describes the mathematics background these systems are based on.

Chapter 3 describes the related work and research done in the fields of elliptic curves,

bilinear pairings, and identity-based cryptography. In Chapter 4, a pairing-based en-

cryption key agreement protocol is proposed. Based on such key agreement protocol,

we further define the algorithms and workflow for our identity-based encryption sys-

tem. Chapter 5 gives the implementation details about our identity-based encryption

system. Chapter 6 provides the efficiency and security analysis. Finally, Chapter 7

concludes the thesis.

7

CHAPTER 2

ASYMMETRIC AND SYMMETRIC CRYPTOGRAPHY

Cryptography is the science of using mathematics to encrypt and decrypt data. In

the past decades, cryptography has became a cornerstone of computer and communi-

cations security. It is in widespread use today, and you are likely to have used it even

if you dont realize it. For instance, When you shop on the Internet , cryptography

is used to ensure privacy of your credit card number as it travels from you to the

online store’s server. In electronic banking, cryptography is used to ensure that your

checks cannot be forged. Cryptography addresses a wide range of problems, but the

most basic problem remains: the classical one of ensuring security of communication

across an insecure medium. Its study touches on branches of mathematics that

may have been considered esoteric, and it brings together fields like number theory,

computational-complexity theory, and probability theory.

2.1 Asymmetric Cryptography

Public-key cryptography, also known as asymmetric cryptography, is a class of crypto-

graphic algorithms which requires two separate keys, one is secret and one is public.

Although different, the two parts of this key pair are mathematically linked. The

public key can be known by everyone and is used for encrypting messages. Messages

encrypted with the public key can only be decrypted in a reasonable amount of time

8

using the private key. RSA stands for Ron Rivest, Adi Shamir and Leonard Adleman,

who first publicly described the asymmetric encryption scheme in 1977 [4]. Public-key

cryptography is based on the intractability of certain mathematical problems. Its

security is based on assuming that it is difficult to factor a large integer composed of

two or more large prime factors. A typical asymmetric encryption scheme consists of

three algorithms [4]:

Key generation

The randomized key generation algorithm takes no inputs and returns a pair of

keys, the public key and matching private key

• Choose two distinct prime numbers p and q.

The integers p and q should be chosen at random, and should be of similar

bit-length. For 512 bit p and q, it will end up with a 1024-bit key size.

And for 1024 bit p and q, it will end up with a 2048-bit key size. A 1024

bit key was considered secure 5 years ago. It is not true today due to

increases in computation power. In 2014, RSA key sizes are required to

grow from 1024 to 2048 bits.

• Compute n = pq

n is used as the modulus for both the public and private keys.

• Compute ϕ(n) = ϕ(p)ϕ(q) = (p-1)(q-1) = n - (p + q -1), where ϕ is Euler’s

totient function.

• Choose an integer e such that 1 <e <ϕ(n) and gcd(e, ϕ(n)) = 1

e is known as the public key exponent.

9

• Calculate d as d ≡ e−1 (mod ϕ(n))

d is the multiplicative inverse of e (modulo ϕ(n)) and it is kept as the

private key exponent.

The public key consists of the modulus n and the public exponent e which are

publicly known. The private key consists of the modulus n and the private

exponent d, which must be kept secret. p, q, and ϕ(n) must also be kept secret

because they can be used to calculate d.

Encryption

If Alice wishes to send message M to Bob, Alice does the following:

• Turn M into an integer m, such that 0 <m <n by using a reversible protocol

known as a padding scheme.

• Calculate C≡ me (mod n) where C is the cipher text.

• Alice then sends the cipher text C to Bob.

Decryption

Bob can recover m from C by using his private key exponent d to compute

m≡ cd (mod n)

The security of public key cryptography is based on the fact that, given the public

known n, it appears to be quite hard to recover its prime factors p and q. Despite

hundreds of years of study of the problem, finding the factors of a large number still

takes a long time in general. For instance, it has been estimated in the 1970s where

recovering the prime factors of a 1024-bit number would take a year on a machine

costing 10 million US dollar. A 2048-bit number would require several billion times

10

more work [5]. These estimates are much less today than it have been expected in

the 1970s due to the discovery of faster factoring methods as well as steady advances

in computing power. The recommended key sizes have accordingly increased over

the years. No one knows whether even faster factoring methods might be discovered

in the coming years. On the other hand, no one has proved that these cant be

discovered. Both aspects remain important research areas in mathematics and public

key cryptography.

2.2 Symmetric Cryptography

Symmetric cryptography differs from asymmetric cryptography by using the same

key to encrypt and decrypt message. This means that the party encrypting the data

and the party decrypting it need to share the same secret key. The distribution of

the secret keys requires prior communications or secure channels. In practice, for

symmetric cryptography, a secure channel is very difficult to achieve in the absence

of an key distribution center (KDC) or a key translation center.

2.2.1 Discrete Logarithm Problem

The discrete logarithm problem is defined as:

given a group G, a generator g of the group and an element h of G, to find the discrete

logarithm to the base g of h in the group G.

If G is a multiplicative cyclic group and g is a generator of G, then from the definition

of cyclic groups, every element h in G can be written as gx for some x. The discrete

logarithm to the base g of h in the group G is defined to be x . For example, if the

group is (Z5)*, and the generator is 2, then the discrete logarithm of 1 is 4 because 24

11

≡ 1 mod 5. The hardness of finding discrete logarithms depends on the groups. For

discrete logarithm-based cryptosystems, a popular choice of groups is (Zp)* where p

is a safe prime number. A safe prime is a prime number which equals 2q+1 where q

is a large prime number. This guarantees that p-1 = 2q has a large prime factor so

the discrete logarithm problem cannot be solved easily [11].

2.2.2 Diffie-Hellman Key Exchange

When two parties want to use the symmetric encryption scheme, it is assumed they

are in possession of a shared secret key. The class of protocols whereby a shared

secret becomes available to two or more parties for subsequent cryptographic use are

known as key establishment protocols. Key establishment is further subdivided into

key transport and key agreement. In key transport, one party creates or obtains a

secret value and securely transfers it to the other parties. A key agreement protocol

is a key establishment technique in which a shared secret is derived by two (or more)

parties as a function of information contributed by, or associated with, each of the

parties, ideally, such that no third party can compute the resulting value.

DiffieHellman key exchange is a method to exchange cryptography keys. It allows

two parties that have no prior knowledge of each other to establish a shared secret key

over an insecure communications channel such as Internet. This shared secret key can

then be used to encrypt subsequent communications using a symmetric encryption

scheme. The goal of the protocol is to make it impossible to determine the shared

secret key for some third party, despite the fact that any of the messages sent between

the two end user might be intercepted.

To perform the Diffie-Hellman protocol, let G be a cyclic group with generator g.

First Alice chooses a secret number a such that a is a group element of G, and Bob

12

chooses a secret b such that b is a group element of G. Then Alice sends ga mod p

to Bob, and Bob sends gb mod p to Alice. Now, Alice computes KA=(gb)a=gab mod

p , and Bob computes KB=(ga)b=gab mod p . Thus, the two of them have agreed on

a shared secret group element gab mod p of group G. Alice and Bob can therefore, in

theory, communicate privately over a public medium with an encryption method of

their choice using the shared secret key KAB = gab mod p.

protocol handshake

1. Alice → Bob: ga mod p

2. Bob → Alice: gb mod p

The question then is: is it possible for the evesdropper let’s say Eve to determine gab

mod p from the communications sent between Alice and Bob? Note that there are only

two messages sent between Alice and Bob, namely the two group elements ga and gb.

Thus the problem becomes: given ga, gb and compute gab. This is the Diffie-Hellman

problem, and the assumption that it is hard, even with the help of a powerful computer

to conduct millions of trials [16]. One of the reasons for this assumption has to do with

the relationship of the Diffie-Hellman problem to the problem of computing discrete

logarithms in a cyclic group G. Note that if it were possible to efficiently compute

the discrete logarithm a of ga, then an attacker could easily solve the Diffie-Hellman

problem by first computing a from ga, and then calculating (gb)a=gab. Thus, the

Diffie-Hellman problem is at least as hard as Discrete Log problem [16].

The Diffie-Hellman protocol can be extended to three parties. For three parties

it takes two rounds and six broadcasts to establish a key. The first three message

broadcasts are transmitted in the first round and the rest of the protocol broadcasts

are transmitted in the next round [10, 11]. As in the two party case, we assume

13

all participants here agree on suitable parameters g and p in advance. The message

flows of this protocol are given [10, 11]:

1. A → B, C: ga mod p

2. B → A, C: gb mod p

3. C → A, B: gc mod p

4. A → B, C: gba mod p and gca mod p

5. B → A, C: gab mod p and gcb mod p

6. C → A, B: gac mod p and gbc mod p

After the first three broadcasts of above steps, entity A computes gba mod p and gca

mod p, B computes gab mod p and gcb mod p, C computes gac mod p and gbc mod

p. Once the protocol is complete, KA, KB and KC are computed by A, B and C

respectively. Where KA, KB and KC are all equal to KABC=gabc mod p . This value

can serve as the secret key shared by A, B and C.

2.2.3 Symmetric Encryption Scheme

Symmetric cryptography scheme consists of three algorithms such as asymmetric

cryptography- key generation, encryption, and decryption. The key generation al-

gorithm is randomized. It takes no inputs. When it is run, it flips coins internally

and uses these to select a key K. Typically, the key is just a random string of some

length, in which case this length is called the key length of the scheme. Symmetric

cryptography uses much smaller key size compared to asymmetric cryptography. 128

bits is considered sufficient length for symmetric algorithm keys. The Advanced

14

Encryption Standard published in 2001 uses a key size of 128 bits. It can use keys

up to 256 bits but usually only for highly sensitive data.

Once in possession of a shared key based upon some key exchange methods, for

example, the DiffieHellman key exchange method. The sender can run the encryption

algorithm with key K and input message M to get back a string we call it cipher text.

The cipher text can then be transmitted to the receiver. The encryption algorithm

may be either randomized or stateful [6]. If randomized, it flips coins and uses those

to compute its output on a given input K, M. Each time the algorithm is invoked, it

flips coins anew. In particular, invoking the encryption algorithm twice on the same

inputs may not yield the same response both times. If the encryption algorithm is

stateful, its operation depends on a quantity called the state that is initialized in

some pre-specified way. When the encryption algorithm is invoked on inputs K, M,

it computes a cipher text based on K, M and the current state. Upon decryption,

the receiver, after receiving a cipher text C, will run the decryption algorithm with

the same key used to create the cipher text. The decryption algorithm is neither

randomized nor stateful.

2.2.4 Mode of Operation

The following schemes rely either on a family of permutation or a family of functions

to map input of bit strings of a fixed length to output of the same length. Effectively,

the mechanisms spell out how to use the blockcipher to encrypt. We call such a

mechanism a mode of operation of the blockcipher [8]. A blockcipher works on units

of a fixed size known as a block size, but messages come in a variety of lengths. In

practice, one could pad the message appropriately so that the padded message always

had length a positive multiple of the block length, and then apply the encryption

15

algorithm to it. Several padding schemes exist. The simplest one is to add null bytes

to the plain text to bring its length up to a multiple of the block size, but care must

be taken that the original length of the plain text can be recovered; This is so, for

example, if the plain text is a C style string which contains no null bytes except at the

end. Slightly more complex padding scheme is the original DES method, which is to

add a single one bit, followed by enough zero bits to fill out the block; if the message

ends on a block boundary, a whole padding block will be added. Most sophisticated

are CBC-specific schemes such as cipher text stealing or residual block termination,

which do not cause any extra cipher text, at the expense of some additional complexity

[6, 7, 8]. For the below schemes, it is convenient to assume that the length of the

message to be encrypted is a positive multiple of a block length associated to the

family.

ECB mode

Electronic Code Book (ECB) is a mode of operation for a blockcipher. The message

is divided into blocks, and each block is encrypted separately. With the characteristic

that each possible block of plain text has a defined corresponding cipher text value

and vice versa. It is the simplest of the all encryption modes.

Key generation

Operating it in ECB mode, the key-generation algorithm simply picks a random string

of certain length and returns it as a stateless symmetric key, and this key is used for

encrypting and decrypting each block.

Encryption Algorithm using Key k operating on message M

Ek(M)

M[1]....M[m] ← M

16

for i← 1 to m do

C[i]← Ek(M [i])

C← C[1]...C[m]

return C

Decryption algorithm using key k operating on cipher text C

Dk(C)

C[1]....C[m]← C

for i← 1 to m do

m[i]← Ek(C[i])

M← M[1]...M[m]

return M

CBC mode

In CBC mode, each block of plain text is XORed with the previous cipher text block

before being encrypted. This way, each cipher text block depends on all plain text

blocks processed up to that point. To make each message unique, an initialization

vector must be used in the first block.

Encryption algorithm using key k operating on message M

Ek(M)

M[1]....M[m] ← M

C[0] ← (0, 1)n

for i← 1 to m do

C[i]← Ek(M[i]⊕C[i-1])

return C

Decryption algorithm using key k operating on cipher text C

17

Dk(C)

C[0]...C[m]← C

for i← 1 to m do

m[i]← Ek(C[i]⊕ C[i− 1])

return M

There are other modes such as OFB and CTR modes that do not require any

special measures to handle messages whose lengths are not multiples of the block

size, since these modes work by XORing the plain text with the output of the block

cipher. The last partial block of plain text is XORed with the first few bytes of the last

keystream block, producing a final cipher text block that is the same size as the final

partial plain text block. This characteristic of stream ciphers makes them suitable

for applications that require the encrypted cipher text data to be the same size as the

original plain text data, and for applications that transmit data in streaming form

where it is inconvenient to add padding bytes [7].

18

CHAPTER 3

ELLIPTIC CURVE AND PAIRING-BASED

ENCRYPTION

This chapter gives an introduction to the related works done in the fields of elliptic

curves, bilinear pairings, and identity-based encryption.

3.1 Prior Research

This thesis is based on the research and implementation done in the fields of identity-

based encryption and elliptic curve. Elliptic curves have been a subject of research for

a long time. Initially, researchers were mainly interested in finding points on elliptic

curves over infinite fields such as the field of rational or real numbers. The study

of curves over finite fields, which at first sight seem to form rather boring abelian

groups, aided in finding such points. In 1985, however, elliptic curves over finite fields

found an application of their own in cryptography. Koblitz and Miller independently

realized that discrete logarithm-based cryptosystems might provide better security

when defined on the group of points on an elliptic curve rather than the conventional

multiplicative group of a finite field [4]. Or alternatively, they figured, elliptic curves

could enable shorter keys, while providing a similar level of security. Since then,

a lot of research effort has been put into elliptic curve cryptography and numerous

cryptosystems have been proposed.

19

This is where pairings first come into play. A pairing in this context is a function

that takes as input two points on an elliptic curve and outputs an element of some

multiplicative abelian group. Furthermore, a pairing satisfies some special properties,

the most important of which is bilinearity. Due to these special properties, pairings

are hard to construct. The two pairings that are known at present are the Weil

pairing and the Tate pairing. In 1993, Menezes et al. discovered that the Weil

pairing can be used to attack discrete logarithm-based systems on a certain class

of elliptic curves; the so-called MOV-reduction [3]. One year later, Frey used the

Tate pairing to describe a similar attack, called the FR-reduction [3]. This crypt-

analytic use was the only known application of pairings for a long time. In 2000,

however, Joux discovered that pairings can be used as cryptographic building blocks

as well. The bilinearity of the pairings enables many cryptosystems with interesting

properties. Jouxs discovery spurred an extensive research into new applications based

on pairings [3]. The large number of articles on pairing-based cryptography that have

appeared since 2000 indicates the tremendous amount of research effort put into this

subject.

Undoubtedly the most striking application of pairings is the realization of identity-

based cryptography. The fact that public keys are linked to the users identity

guarantees the authenticity and therefore takes away the need for certificates as in

conventional public-key cryptosystems. However, the implementation of an identity-

based encryption scheme remained an open problem until Jouxs discovery of the

constructive use of pairings. In 2001, Boneh and Franklin were able to design an

efficient identity-based encryption scheme through pairings. Besides identity-based

systems, numerous other pairing-based schemes with interesting properties have ap-

peared, such as an efficient key agreement protocol and a signature scheme with short

20

signature. Identity-Based Encryption takes a breakthrough approach to the problem

of encryption key management.

3.2 Additive and Multiplicative Group

Some mathematic groups have an interesting property: all the elements in the group

can be obtained by repeatedly applying the group operation to a particular group

element. If a group has such a property, it is called a cyclic group and the particular

group element is called a generator [15]. A trivial example is the group Zn, the

additive group of integers modulo n. In Zn, 1 is always a generator:

1 ≡ 1 mod n

1+1 ≡ 2 mod n

1+1+1 ≡ 3 mod n

...

1+1+1+...+1 ≡ n ≡ 0 mod n

If a group is cyclic, then there may exist multiple generators. For example, we know

Z5 is a cyclic group. The element 1 is a generator for sure. And if we take a look at

2, we can find:

2 ≡ 2 mod 5

2+2 ≡ 4 mod 5

2+2+2 ≡ 6 ≡ 1 mod 5

2+2+2+2 ≡ 8 ≡ 3 mod 5

2+2+2+2+2 ≡ 10 ≡ 0 mod 5

So all the group elements 0,1,2,3,4 in Z5 can also be generated by 2. That is to say,

2 is also a generator for the group Z5.

21

For multiplicative group modulo n, Zn* is cyclic if and only if n is 1 or 2 or 4 or pk

or 2*pk for an odd prime number p and k ≥ 1. So Z5* is a cyclic group because 5 is

a prime number. Actually all the elements in Z5*, 1,2,3,4 can be generated by 2:

21 ≡ 2 mod 5

22 ≡ 4 mod 5

23 ≡ 8 ≡ 3 mod 5

24 ≡ 16 ≡ 1 mod 5

Not every element in a group is a generator and not every group is cyclic. For example,

Z12* is not a cyclic group. The elements in Z12* are: 1,5,7,11. None of the elements

can generate the whole group. If Zn* is cyclic and g is a generator of Zn*, then g is

also called a primitive root modulo n [15].

3.3 Overview of Elliptic Curve

Consider a polynomial Curve1 in two variables X, Y. We are interested in the solutions

to Curve1= 0 which describe a curve on a two-dimensional plane. We first observe

that if Curve2 is another curve that is an affine transformation of Curve1, that is,

if we can linearly transform (e.g. rotate, scale, shear) and then translate Curve1 to

obtain Curve2 then a correspondence exists between the solutions to Curve1= 0 and

the solutions to Curve2= 0. Knowing the solutions of one allows us to easily compute

the solutions of the other, For this reason we consider such curves Curve1 and Curve2

to be equivalent. If every term in Curve1 has combined degree of at most 1, that

is, if Curve1= aX + bY + c then Curve1 describes a line. The geometry of lines is

too simple to yield anything cryptographically useful. If every term in Curve1 has

combined degree at most 2, then Curve1 describes a single line, a pair of lines, a

22

parabola or a hyperbola. The first two possibilities can be viewed as special cases,

occurring when Curve1 is reducible or degenerate in some sense. By adding points

of infinity to the plane, we can find affine transformations that change any ellipse,

parabola or hyperbola into the unit circle centered at the origin. Intuitively, the two

ends of the parabola can be thought of as meeting at a point at infinity, forming

a circle, and similarly opposite ends of hyperbolas connect at infinite points. Thus

to study degree 2 curves is essentially to study the unit circle, whose geometry is

again is too simple for our purposes. However, degree 3 curves, called elliptic curves,

are nontrivial. For instance, unlike the previous two cases we cannot transform any

elliptic curve in to any other, and elliptic curves have a rich structure well-suited for

cryptography [23].

3.3.1 Number of Points on Elliptic Curve

Let Fq be a field for some prime q >3, unless otherwise specified we shall always

define curves over a field of prime order and of characteristic greater than three. An

elliptic curve E over such a field Fq is an equation of the form

E: Y 2=X3 + aX + b where a, b ∈ Fq.

Let

δ = 4a3 + 27b2, the discriminant of the cubic in x .

Then

E is singular if δ = 0. The cubic has a repeated root, and nonsingular otherwise. we

always consider nonsingular elliptic curves where the cubic has distinct roots.

23

For any field Fqk define E(Fqk) to be the set of all solutions of E over Fqk , called the

finite points along with a special point denoted O, that is called the point at infinity.

We write]E(Fqk) for the number of elements of E(Fqk). Intuitively, the point O can

be thought of as the point where all lines parallel to the Y-axis meet. Mathematically,

we solve the curve equation using projective coordinates [18] and one can show that

O= (0,1,0) is always a unique infinite solution to the equation.

we quote two well-known theorems here [47]

Theorem(Hasse)

Let

t=qk+ 1 -]E(Fqk).

Then

| t |≤ 2
√
qk.

Thus the number of points on an elliptic curve in a given field is on the same order

as the size of the field. The quantity t is called the trace of Frobenius.

Theorem(Weil)

Let t=q+1 -]E(Fq) where q is a prime power. Factor the polynomial x2 - tx+q as (x

- α)(x - β)over C[x]. Then

]E(Fqk) = qk + 1− (αk + βk).

This last theorem is more practical in the following form. Let t0= 2, Let t1=q+ 1 -

]E(Fq). Define tn recursively by

24

tn = t1tn−1 − qtn−2.

then

]E(Fqk) =qk+1 - tk

For example, consider the curve E given by Y 2=X3+X+ 6 over F19 , an example used

by Balasubramanian and Koblitz [19]. There are 18 points

(0,5),(4,6),(2,4),(3,6),(14,3),(12,13),

(18,2),(10,3),(6,0),(10,16),(18,17),(12,6),

(14,16),(3,13),(2,15),(4,13),(0,14), O

thus the trace of Frobenius t= 2. According to the Theorem(Weil), over F19, we have

]E(F192) = 192+ 1-t2

where t2= 2*2-19*2 =-34, thus]E(F192) = 396

3.3.2 Group Operations over Elliptic Groups

Some special addition operations are defined over elliptic curves, and this with the

inclusion of a point O, called point at infinity . If three points are on a line intersect

an elliptic curve, the their sum is equal to this point at infinity O which acts as the

identity element for this addition operation. For special addition operations, check

Figure 3.1

Let the points P=(x1,y1) and Q=(x2,y2) be in the elliptic group Ep(a,b) and O is

the point at infinity. the rules for addition over the elliptic group Ep(a,b) are:

25

Figure 3.1: Special Group Addition Operations

1. P + O=O + P=P

2. if x2=x1 and y2= -y1, that is P=(x1,y1)and Q=(x2,y2)=(x1,-y1)= -P, then

P+Q=O

3. If Q 6= P, then the sum P+Q=(x3,y3) is givenby

x3=λ
2- x1 -x2 mod p

y3=λ(x1 − x3)− y1 mod p

where

λ= y2−y1
x2−x1

if P 6= Q

and

λ=
3x2

1+a

2y1
if P = Q

Let’s see a simple example:

Let P=(3,10)∈ E23(1,1). Then 2P=(x3,y3) is equal to:

2P=P+P=(x1,y1)+(x1,y1)

26

Since P=Q and x2=x1, then values of λ,x3 and y3 are given by:

λ =
3x2

1+a

2y1
mod p

=3(32)+1
2X10

mod 23

= 5
20

mod 23

= 41 mod 23

= 6

x3 = λ2 − x1 − x2 mod p

=62-3-3 mod 23

= 30 mod 23

= 7

y3 = λ(x1 − x3)− y1 mod p

=6(37)10 mod 23

=34 mod 23

= 12

Therefore 2P=(x3, y3)=(7,12). The most expensive step is the division in the compu-

tation of λ.

The multiplication kP is obtained by doing the elliptic curve addition operation k

times by following the same additive rules.

3.4 Overview of Bilinear Pairing

Let G1, G2, and Gt be cyclic groups of the same order, more specific, let G1, G2 be

additive groups and Gt be a multiplicative group, all of prime order r. Let g1 be a

27

generator of G1, and g2 be a generator of G2, A bilinear map or a bilinear pairing is

an efficiently computable function ê : G1 ×G2 → Gt such that satisfies the following

conditions:

1. bilinearity

it holds that

ê(ga1 , g
b
2) = ê(g1, g2)

ab for all a, b ∈ Zr(the ring of integers modulo r).

2. non-degeneracy

ê(g1, g2) 6= 1.

3. computability

ê can be efficiently computed.

the tuple (r, g1, g2, G1, G2, Gt) is called asymmetric bilinear pairing if G1 and G2 are

different groups. On the other hand, if G1 = G2 = G and g is a generator of G then

the tuple (r, g, G, Gt) is called symmetric bilinear pairing. If G is cyclic, the map e

will be commutative since we have ê(S,T)=ê(T,S) for any S,T in G. This is because

for a generator g in G , there exist integers a and b such that S= ga and T=gb.

Therefore ê(S,T) = ê(ga,gb) = ê(g,g)ab= ê(gb,ga) = ê(T,S). In the symmetric pairing

the order of G and Gt need not to be prime. A composite group order is useful for

some cryptosystems [21], but we must be aware that in this case even if g1 and g2

have order r, ê(g1, g2) may not be a generator of Gt, but rather a generator of some

subgroup of Gt whose order is a factor of r. When r is composite, it is incorrect to

say all nondegenerate pairings are equivalent up to a constant. Indeed, if d greater

than 1 is a divisor of r and g1, g2 are generators of G1, G2 respectively, then a bilinear

map that takes (g1, g2) to a dth root of unity is still nondegenerate [21]. Since there

28

is more than one choice for d for a composite r, these maps cannot be equivalent up

to a constant. They are however still completely determined by ê(g1, g2) where g1,

g2 are generators. This also means that ê(g1, g2) = 1 does not imply that at least

one of g1, g2 is the identity element, in contrast to the case when r is prime, if ê(g1,

g2) = 1, it implies at least one of g1, g2 is the identity element. Therefore, some care

is needed when dealing with composite r. Facts about the pairing that are true for

prime r do not always carry over.

3.4.1 Tate Pairing

The most commonly used pairings for cryptography are Weil pairing and Tate pairing.

In this section, we will show how to compute pairing using the Miller algorithm. Since

we are using Tate pairing for our implementation, we will skip Weil pairing and focus

on Tate pairing. The definitions and algorithms presented in following subsections

can be found on many pairing-based cryptography articles.

Tate Pairing Definition

Let E be an elliptic curve containing n points over a field Fq. Let G be a cyclic

subgroup of E(Fq) of order r with r, q coprime. Let k be the smallest positive integer

such that r divides qk−1. Fqk is the smallest extension of Fq containing the rth roots

of unity. The Tate pairing [23]

ê : E[r] ∩ E(Fqk) X E(Fqk)/rE(Fqk)→ Fqk
∗/Fqk

∗r

is defined as follows

Let fP be a rational function with divisor (fP) = (P)r. Choose an R ∈ E(Fqk) such

29

that R 6= P, P - Q, O, -Q. The define

f(P, Q) =fP (Q+R)
fP (R)

It can be shown that the above value is independent of the choice of R and:

• f(aP, bQ) = ê(P,Q)ab for all P, Q, a, b.

• f(P, Q) = 1 for all P if and only if Q=O.

• f(P, Q) = 1 for all Q if and only if P=O.

• f(φ(P), φ(Q)) = f(P,Q)q for all P, Q ∈ E[r], where φ denotes the Frobenius

map.

3.4.2 Using Miller’s Algorithm to Calculate Tate Pairing

For any points U, V, let LU,V (X, Y) be an equation for a line through U and V, let

TU(X, Y) be an equation for the tangent through U. let VU(X, Y) be an equation for a

vertical line through U(e.g.X -x, where U= (x, y)). We now consider the Tate pairing.

We wish to compute fP (Q) where fP has divisor (P)r. Thus define the intermediate

functions fk by [23]

(fk) = (P)k/(kP)

we have (fr) = (fP). we can show

30

(fk) = LiP

V(i+1)P
for i=1 to i=k-1

since

(fk) = (P)(P)
(2P)

. (P)(2P)
(3P)

... (P)((k−1)P)
(kP)

We find

(f2k = (f 2
kTkP/V2kP)

which can be shown with direct calculation:

(P)2k

(2kP)
= (P)2k

(kP)2
· (kP)2(−2kP)
(2kP)(−2kP)

and similarly we can show

(fk+1 = (fkLkP,P/V(k+1)P)

leading to the following algorithm that computes fP (Q) given points P, Q(where P

has order r). Let the binary representation of rt...r0

Millers algorithm for Tate pairing: fP (Q) [25]

x← 1

Z ← P

for i ← t-1,...,0 do

x ← x2Tz(Q)/V2z(Q)

Z ← 2Z

if ri=1 then

x ← xLZ,P (Q)/VZ+P (Q)

Z ← Z+P

31

end if

end for

When the algorithm finishes we have x=fr(Q) (and Z= rP=O).

3.5 Identity-based Encryption Using Pairing

In 1984, Shamir[29] asked for a public key encryption scheme in which the public key

can be an arbitrary string. Shamir’s original motivation for identity-based encryption

was to simplify certificate management in public key encryption systems. The concept

was named identity-based public key cryptography (ID-PKC) by Shamir and has

subsequently also became known as identifier-based public key cryptography in some

articles.

There is a new role needed in identity-based public key cryptography, and is

named as Private Key Generator (PKG) or Key Generation Center (KGC)to reflect

this. The role of the PKG is to issue the private key corresponding to the public key

(derived from the identifier IDA) to entity A. This issuing only occurs after entity

A is authenticated by the PKG. To generate private keys, the PKG makes use of a

master-key which must be kept secret. The requirement to have an authentic CA

public key is replaced by the requirement to have authentic PKG parameters.

In his 1984 paper[29], Shamir was only able to construct a concrete identifier-based

public key signature scheme. Developing a concrete satisfactory identifier-based

public key encryption scheme remained an open problem. There have been several

proposals for IBE schemes [30, 31]. However, none of these are fully satisfactory .

Some solutions require that users not collude [31]. Other solutions require the PKG

to spend a long time for each private key generation request. Some solutions require

32

tamper resistant hardware [30]. It is fair to say that until the Boneh/Franklin scheme

is proposed by Dan Boneh and Matthew K. Franklin in 2001 [32], constructing a

usable IBE system was an open problem.

33

CHAPTER 4

AN IDENTITY-BASED ENCRYPTION SYSTEM DESIGN

The following two chapters are the main contributions to the thesis. The first chapter

introduces a fully functional identity-based encryption scheme design. The second

chapter describes the implementation of the project.

In our IDE system, when Alice sends email to Bob, she simply encrypts the

message and attachment using a key let’s call it keyAB, which is derived from Bob’s

public key and Alice’s private key. Bob’s public key is generated from Bob’s email

address so there is no need for Alice to obtain Bob’s public key certificate. When

Bob receives the message, he derives a decryption key let’s call it keyBA, which can

be calculated from Bob’s private key and Alice’s public key. Based on some pairing

properties, keyAB actually equals keyBA. Theoritically, such IBE system can be

built based on any bilinear map ê : G1XG2 as long as variant of the computational

Diffie-Hellman problem in G1 is hard.

4.1 Elliptic Curve and Pairing Construction

There are two mathematical settings to choose from when implementing cyclic groups:

finite fields and elliptic curves. For finite fields, one picks a prime n and uses a

subgroup G of Zn of prime order r, so the group operation is field multiplication.

Note an RSA cryptosystem arises when n is instead chosen to be the product of two

34

large primes p, q, in which case computations are still possible in Zn even if its order

is unknown [22]. For elliptic curves, one takes an elliptic curve E over some finite

field K and takes some subgroup G of the group of points E(K) with prime order r,

so the group operation is point addition.

4.1.1 Elliptic Curve Construction

Let E be an elliptic curve over a field K . The group operation means that every

point on E generates a cyclic group G . Then we can use cyclic group cryptography

provided that its order is prime, that the basic operations, namely group operation,

inversion, hashing, are efficient, and that problems such as discrete log are difficult.

On elliptic curves, the construction of a point of order r, or a factor of r, from some

given point P ∈E(K)can be accomplished similarly by multiplying P by n/r where

n =]E(K). This is because, let n=]E(K), then from Abelian group theory for any

prime r dividing n, there exists a point P∈E(K) of order r. and furthermore, if r2 does

not divide n then there is exactly one subgroup G of E(K) of order r. This suggests

the following procedure for implementing any cryptographic scheme based on cyclic

groups of prime order [26]:

1. Choose any curve E(K) and somehow work out n=]E(K).

2. Find a prime r divides n, such that r2 does not divide n. We shall work in the

unique cyclic subgroup G is subgroup of E(K) of points of order r.

3. When a random group element of G is required, first choose a random point of

E(K) and then multiply by n/r. Similarly, when hashing to a point of G, first

hash to a point in E(K) and then multiply by n/r .

35

4. Other operations are straightforward: every time a group operation is required,

we perform a point addition. To find an inverse of a group element, we negate

the y-coordinate of a point. When an exponentiation is called for we carry out

a point multiplication.

If a pairing is desired, we must seek out elliptic curves whose orders satisfy various

conditions. As a result, instead of choosing a curve first and counting the number

of points and hoping for a large prime factor r of n, we must use families of curves

where the size of the group is known in advance and has the requisite properties where

]E(K) is always easy to determine and furthermore, E(K) is always cyclic. The plane

curve over a finite field (rather than the real numbers) which consists of the points

satisfying the equation y2 = x3 + ax + b, along with a distinguished point at ∞ is

suitable for pairing-based cryptography.

4.1.2 Finding a Random Point on an Elliptic Curve

Let E: Y 2 = X3+aX+b be an elliptic curve over a field K . There always exists an

unique infinite solution, namely O. We describe a simple method for finding the finite

points of E. For any x ∈ K, we may attempt to solve Y 2 = X3+aX+b for Y by finding

a square root of the right-hand side. We momentarily postpone describing the details

of square root algorithms. For now, assume we can find square roots. When solutions

for Y do exist for a given x, we have found exactly two points, one for each square

root, except in the rare case when the point lies on the X-axis, which can happen in

at most three places. Also, recall from an above theorem that the size of K is roughly

the same as the number of points on E(K). Combining these two facts shows that for

approximately half of the choices for x ∈ K ,a square root exists and we can solve E

to find a point. Thus we have a fast method of finding random points on E:

36

1. Choose x ∈ K at random.

2. Solve Y 2 = X3+aX+b for Y. If there are no solutions then go to the previous

step.

3. Flip a coin to decide which solution of Y to use.

Of course, it is impossible to choose the point at infinity with this method, and

points that lie on the X-axis have a slightly higher probability of been picked than

other points. For cryptography this is of no concern since the point of infinity is

usually unwanted, and the probability of finishing at a point with zero Y-coordinate

is negligible since there are at most three of them. Moreover, it is often unimportant

which square root is chosen. If one insists on choosing all points of E(K) uniformly,

one could simply add a step before choosing x . Let n=]E(K). Then with 1/n

probability, choose O or one of the points lying on the X-axis, otherwise proceed with

the above algorithm, except in the second step, we also go back to the first step if

the only solution is Y= 0.

Before attempting to find a square root of a given element x ∈K, we can check

that one actually exists first. When K has prime order, one can compute the Legendre

symbol before attempting to square root x. More generally it can be checked that

X2 - x is reducible. Alternatively, one can omit the check, proceed with a square

root algorithm, and compare the square of the output with x: if there is a mismatch

then x is not a square after all. It remains to describe how to take square roots. For

a field of prime order one can use the Tonelli-Shanks algorithm to compute square

roots [18, 20]. For a general finite field, one must use a more complex algorithm.

Perhaps the simplest of these Legendres method which can be viewed as factoring X2

-x. Faster algorithms exist, though sometimes require precomputation.

37

4.1.3 Hashing to Points

Finding points by choosing an X-coordinate and solving for Y suggests an efficient

algorithm for hashing to a point in E . The input is hashed to some x ∈ K, and

then a corresponding y is sought. On failure, a new x -coordinate is deterministically

generated from x, and again we attempt to solve E for y. Repeating this process as

many times as necessary eventually yields a valid point (x, y)∈E(K).

4.1.4 Pairing Construction

Constructing a pairing is a balancing act. Fq must be large enough so that E(Fq) can

foil generic discrete log attacks, while Fqk must be large enough to resist finite field

discrete log attacks. At the same time, Fq and Fqk should be as small as possible to

minimize time and space usage [23]. More precisely:

1. r must be a large enough prime so that generic discrete logarithm attacks in a

group of order r are ineffective. Since q is about the size of]E(Fq), this places

a similar lower bound on q

2. q ought to be as small as possible, so that computations in Fq are as fast as

possible.

3. qk must be large enough so that finite field discrete logarithm attacks in Fqk

are ineffective. Also q should not have low Hamming weight [33, 34], nor be a

power of a small prime [35].

4. qk must be small enough so that operations in Fqk are efficient. All other

things being equal, qk should be small as possible so that operations are as fast

as possible.

38

Observe the first three statements are true for any cryptographically using elliptic

curve, not just for pairing-based cryptography. The last condition, requiring Fqk to be

small enough to compute on, is responsible for much of the difficulty in pairing-based

cryptography research, as finding curves with small k is nontrivial.

Currently it is acceptable to have an 160-bit r. As for qk, 1024 bits is adequate for

many applications, and calculations in fields of this size can certainly be performed.

4.2 Scheme Design

Our IBE scheme is specified by several algorithms:

System parameters

The curve generator takes two primes r and q, of length 160 and 512 bit respectively,

returns a master key and a curve y2=x3+x over the field Fq for some prime q=3 mod

4. A pairings are constructed on top of the returned curve. Both G1 and G2 are the

group of points E(Fq) so this pairing is symmetric. The order r is some prime factor

of q+1. The system parameters such as the curve and pairing are public known.

User key generate

The algorithm takes the system paramater, master-key, and an arbitrary string ID

∈ 0, 1∗ as input, and returns a public key and private key pair to an user. The ID is

an email address of the user in this case.

Encryption

Takes as input the encryption key KeyAB, plain text message M and returns a cipher

text C.

Decryption

Takes as input the decryption key KeyBA, a cipher text C, and returns the plain text

39

message M.

4.3 Key Agreement Protocol Design

Prior to any secured communication, users must set up the details of the cryptography.

Secret-key (symmetric) cryptography requires the initial exchange of a shared key in

a manner that is private so it does not reveal to any eavesdropping party what key

has been agreed upon. Exchanging of such a key was extremely troublesome until

the Diffie-Hellman key exchange protocol was published in 1975. Diffie-Hellman key

exchange protocol makes it possible to exchange a key over an insecure communica-

tions channel. If you recall from chapter 2, Diffie-Hellman does not specify any prior

agreement or subsequent authentication between the participants. In other words,

DiffieHellman key exchange protocol does not provide authentication of the parties,

and is thus vulnerable to man-in-the-middle attacks. In order to defeat such attacks,

a widely used mechanism is the use of digitally signed keys. When Alice and Bob have

a public-key infrastructure, they may digitally sign an agreed Diffie-Hellman key, or

sometimes, such Diffie-Hellman keys are signed by a certificate authority. The main

goal of this thesis is to design a key agreement protocol and build an identity-based

encryption system on top of the protocol. The key agreement protocol should enable

two or more parties agreeing on a shared secret key, but any eavesdropping party can

not possibly know what key has been agreed upon. In addition, if the agreed key

is derived from user’s identity then there is no need of public key infrastructure or

certificate authority to sign such key.

40

4.3.1 Key Agreement for Emails with One Recipient

Encryption

When Alice sends email to Bob, she does the following:

1. Picks a random number r and then computes XA=r*H(IDA) where H(IDA)is

the hash of Alice’s email address which also is Alice’s public key.

2. Computes the encryption key

KeyAB = ê(SA, H(IDB))r XOR ê(SA, H(IDB))

where SA is Alice’s private key, H(IDB) is Bob’s public key, and r is the random

number from step1. ê is the pairng function which calculated using Miller

algorithm.

3. Encrypts message using encryption key KeyAB.

4. Alice sends the cypher text C along with XA to Bob.

Decryption

When Bob receives the encrypted email from Alice, he does the following to get back

the original message

1. Computes decryption key

keyBA = e(XA, SB) XOR e(H(IDA), SB)

where XA is the multiplication of Alice’s email address and the random number

r that Alice included in the email, SB is Bob’s private key, and IDA is Alice’s

public key.

41

The KeyBA that Alice used to encrypt the original message actually equals to

KeyBA so Bob can use the derived KeyBA to decrypt the email:

KeyBA = e(XA, SB) XOR e(H(IDA), SB)

= e(rH(IDA), SH(IDB)) XOR e(H(IDA), SH(IDB))

= e(SH(IDA), H(IDB))r XOR e(SH(IDA), H(IDB))

= e(SA, H(IDB))r XOR e(SA, H(IDB))

= KeyAB

4.3.2 Key Agreement for Group Emails

I would like to thank my advisor, Dr. Yeh, for sharing his paper: ”P2P email

encryption by an identity-based one-way group key agreement protocol”. The theories

presented by Dr. Yeh are the basis to the key agreement protocol for group emails [46].

Group email encryption

In any email application, a sender should be able to email a message to a group of

n > 0 receivers.

Let ID0 be the email sender’s identity and let IDi, for i = 1, 2, . . . , n, denote the

identity for each email receiver in the group of n people. When the sender sends email

to the group, he does the following:

1. Picking a random number r ∈ Z∗q and computes

xi = e(S0, rPi) ∈ G2,∀i = 0, 1, 2, . . . , n (4.1)

where S0 is the private key of the email sender ID0 and Pi = H(IDi) is the

public key of the email receiver IDi.

42

2. The email sender generates the encryption key K by computing

K = ⊕∀i=0,1,...,n(xi) (4.2)

3. The email sender also computes yi, ∀i = 1, 2, . . . , n, as follows.

yi = ⊕∀j 6=i(xj) (4.3)

or in other words,

yi = x0 ⊕ x1 ⊕ . . .⊕ xi−1 ⊕ xi+1 ⊕ . . .⊕ xn (4.4)

4. The email sender encrypts the email using the secret key K and then sends the

encrypted email out along with (r, y1, y2, . . . , yn).

Group email decryption

Upon receiving the email from ID0, each recipient IDi can compute the secret key

K by using yi (attached in the email) and the public key P0 = H(ID0) of the email

sender ID0 as below.

K = yi ⊕ e(rP0, Si) (4.5)

since

yi ⊕ e(rP0, Si) = yi ⊕ e(rP0, sPi)

= yi ⊕ e(sP0, rPi)

= yi ⊕ e(S0, rPi)

= yi ⊕ xi

= (⊕∀j 6=i(xj))⊕ xi

43

= K

Group email examples

Two email receivers

Assume an email sender ID0 would like to send an email to two email receivers ID1

and ID2.

1. ID0 picks a random number r and computes

x0 = e(S0, rP0)

x1 = e(S0, rP1)

x2 = e(S0, rP2)

2. ID0 generates the encryption key

K = x0 ⊕ x1 ⊕ x2

3. ID0 computes
y1 = x0 ⊕ x2

y2 = x0 ⊕ x1

4. ID0 encrypts the email using the key K and sends (r, y1, y2) along with the

email.

5. For the two recipients, ID1 computes

y1 ⊕ e(rP0, S1) = x0 ⊕ x2 ⊕ e(rP0, SP1)

= x0 ⊕ x2 ⊕ e(sP0, rP1)

44

= x0 ⊕ x2 ⊕ e(S0, rP1)

= x0 ⊕ x2 ⊕ x1

= K

and ID2 computes

y2 ⊕ e(rP0, S2) = x0 ⊕ x1 ⊕ e(rP0, SP2)

= x0 ⊕ x1 ⊕ e(sP0, rP2)

= x0 ⊕ x1 ⊕ e(S0, rP2)

= x0 ⊕ x1 ⊕ x2

= K

Thus, each of the email recipients can derive the same key K that was originally

generated by the email sender ID0.

Three email receivers

Assume an email sender ID0 would like to send an email to three email receivers ID1,

ID2 and ID3.

1. ID0 picks a random number r and computes

x0 = e(S0, rP0)

x1 = e(S0, rP1)

x2 = e(S0, rP2)

x3 = e(S0, rP3)

2. ID0 generates the encryption key

K = x0 ⊕ x1 ⊕ x2 ⊕ x3

45

3. ID0 computes
y1 = x0 ⊕ x2 ⊕ x3

y2 = x0 ⊕ x1 ⊕ x3

y3 = x0 ⊕ x1 ⊕ x2

4. ID0 encrypts the email using the key K and sends (r, y1, y2, y3) along with the

email.

5. For the three recipients, ID1 computes

y1 ⊕ e(rP0, S1) = x0 ⊕ x2 ⊕ x3 ⊕ e(rP0, SP1)

= x0 ⊕ x2 ⊕ x3 ⊕ e(sP0, rP1)

= x0 ⊕ x2 ⊕ x3 ⊕ e(S0, rP1)

= x0 ⊕ x2 ⊕ x3 ⊕ x1

= K

and ID2 computes

y2 ⊕ e(rP0, S2) = x0 ⊕ x1 ⊕ x3 ⊕ e(rP0, SP2)

= x0 ⊕ x1 ⊕ x3 ⊕ e(sP0, rP2)

= x0 ⊕ x1 ⊕ x3 ⊕ e(S0, rP2)

= x0 ⊕ x1 ⊕ x3 ⊕ x2

= K

and ID3 computes

y3 ⊕ e(rP0, S3) = x0 ⊕ x1 ⊕ x2 ⊕ e(rP0, SP3)

= x0 ⊕ x1 ⊕ x2 ⊕ e(sP0, rP3)

46

= x0 ⊕ x1 ⊕ x2 ⊕ e(S0, rP3)

= x0 ⊕ x1 ⊕ x2 ⊕ x3

= K

Thus, all three email recipients can derive the same key K that was originally

generated by the email sender ID0.

47

CHAPTER 5

AN IDENTITY-BASED ENCRYPTION SYSTEM

IMPLEMENTATION

Our IBE system uses JavaMail API to communicate with an email server. It modifies

the Java Pairing-Based Cryptography (JPBC) library for system parameter setup,

and pairing calculation. The JPBC library is a wrapper for the PBC library. The

PBC library is an open source C library that provides an abstract interface to a

cyclic group with a bilinear pairing, insulating the programmer from mathematical

detail. Some known example schemes that build on top of PBC library including BLS

signatures [36], Joux tripartite Diffie-Hellman [37], and Boneh-Lynn-Shacham short

signature [38].

5.1 Javamail

The JavaMail API includes the javax.mail package and other sub-packages. The

javax.mail package defines classes that are common to all mail systems. The javax.mail.internet

sub-package defines classes that are specific to mail systems based on Internet stan-

dards such as MIME, SMTP, POP3, and IMAP. Its message and MIMEType, mul-

tipart classes are used to read, send emails and attachments. See Figure 5.1 for

48

Javamail Message and Multipart class hierarchy.

Figure 5.1: Javamail Message and Multipart Class Hierarchy

5.1.1 Session and Properties

A mail Session object manages the configuration options and user authentication

information used to interact with messaging system. Typically the Properties object

contains user-defined customization in addition to system-wide defaults. An applica-

tion can use the system Properties object via the System.getProperties method. The

49

call to the getInstance method creates a new Session object. A mail-enabled client

uses the Session object to retrieve a Store or Transport object in order to read or

send mail. Typically, the client retrieves the default Store or Transport object based

on properties loaded for that session.

5.1.2 Message Class

The Message class is an abstract class that defines a set of attributes and a content for

a mail message. The Message class implements the Part interface. The Part interface

defines attributes that are required to define and format data content carried by a

Message object. The Message class adds From, To, Subject, Reply-To, and other

attributes necessary for message routing via a message transport system. When

contained in a folder, a Message object has a set of flags associated with it. JavaMail

provides Message subclasses that support specific messaging implementation.

5.1.3 MIME Type and Multipart Class for Attachments

The MIME RFCs 2045, 2046 and 2047 define message content structure by defining

structured body parts, a typing mechanism for identifying different media types,

and a set of encoding schemes to encode data into mail-safe characters. Java Mail’s

Multipart class implements multipart messages. A multipart message is a Message

object where the content-type specifier has been set to multipart. The Multipart

class is a container class that contains objects of type Bodypart. A Bodypart object

is an instantiation of the Part interface it contains either a new Multipart container

object, or a DataHandler object. We use multipart class for email attachments.

See Appendix A for implementation of using JavaMail to send and read messages.

50

5.2 Date Type and Functions

The implemented data types and functions can be categorized as following:

• element

elements of an algebraic structure, fields, groups, and rings. Element arithmetic

functions including addition , multiplication and other operations in rings and

fields. For groups of points on an ellitpic curve, such as the G1 and G2 groups

associated with pairing, both addition and multiplication represent the group

operation.

• pairingParameters

the pairingParameters are constructed from curves. An interface of Generator

class provides a generate method and returns an instance of pairing parameters.

A PairingParameters instance that maps the pairing parameters to specific

values that can be accessed by calling specialized methods.

• pairing

pairing can be initialized from pairingParameters. It is a bilinear map that

takes two elements as input, one from G1 and one from G2, and outputs an

element of Gt. One examples of pairing functions including pairingissymmetric,

returns true if G1 and G2 are the same group, returns false if G1 and G2 are

different group. Other pairing functions including GetG1() which returns the

G1 group and GetGT() returns the Gt group which is the group of rth roots of

unity.

51

5.3 Server and Client Algorithems

When a KGC sets up, it runs the server algorithms to generate an elliptic curve for

the pairing, and a master key that can be used for users’ public and private key

generation. Please refer to Appendix A for detailed implementations.

Type A curves

Let q be a prime satisfying q= 3 (mod 4). Let E be the curve y2=x3+ax for any a.

Then we have]E(Fq) =q+ 1, and]E(Fq2) = (q + 1)2. For any odd r dividing q+ 1

we have that G=E(Fq)[r] is cyclic and has embedding degree k= 2 [39]. consider the

distortion map [45]

ψ(x, y) = (x, iy)

Then ψ maps points of E(Fq) to points of E(Fq2)/E(Fq). Thus if f denotes the Tate

or Weil pairing, then defining e:G X G → Fq2 by

e(P, Q) = f (P,ψ(Q))

gives a bilinear nondegenerate map.

The Setup for this type of pairing for a cryptosystem can be done as follows [23]

1. An order r is chosen, large enough to avoid generic discrete logarithm attacks

2. Recall we require finite field discrete logarithm attacks on Fq2 to be impractical.

Thus we randomly generate h where h is a multiple of four and sufficiently large

to guarantee (hr)2 is big enough to resist finite field attacks. For example, if

r is 160 bits long, and we want q2 to be about 1024 bits long, then h must be

about 352 bits long.

52

3. Next it is checked that q=hr - 1 is prime. We have q= 3 mod 4 by choice of h.

If q is not prime, we go back to the previous step and choose another h.

If h is constrained to be a multiple of 3 as well, then cube roots are easy to compute

in Fq: for all x ∈ Fq we see x−(q−2)/3 is the cube root of x. Observe cube roots are

unique since each element is a cube.

Master key

A master key s is returned as part of the setup algorithm. It can be either 256 or 512

bit long. The master key is used to generate all users private keys. It should be kept

secret and only known to the ”Private Key Generator Server” (PKG).

Hash function

The hash function takes a string which is an email address as input. First, it performs

the standard hash algorithm on it, and then maps the output byte array from the

standard hash function to an element in the group G.

The hash algorithm finding points by choosing an X-coordinate and solving for

Y in E. The input is hashed to some x ∈ K, and then a corresponding y is sought.

On failure, a new x -coordinate is deterministically generated from x, and again we

attempt to solve E for y. Repeating this process as many times as necessary eventually

yields a valid point (x, y)∈E(K)

Key pair generation

When a user registers with a PKG server, he gives the server his email address. The

PKG server runs the key generation algorithm which takes input the email address

and returns a private and public key pair to the user. The public key keyPublic is

an element of G1 that mapped to the hash value of user’s email address. The private

key keyPrivate is the result of pairing multiplication between the master key and the

public key.

53

Two main client side algorithms are encryption and decryption. After an encryp-

tion key KeyAB is derived, Alice passes the key and original message to the Advanced

Encryption Standard (AES) algorithm, and this algorithm returns Alice an encrypted

message also called cipher text. Upon Bob received the cipher text, he computers

the decryption key KeyBA and then pass KeyBA along with the cipher text to the

AES algorithm, and this algorithm returns the original message back to Bob. see

Appendix B for details of AES.

5.4 Java Projects and Packages

The implementation of our IDE system is organized into 3 main java projects and

each project including several packages

• elliptic-curve project

• id-based-encryption-server project

• id-based-encryption-client project

The elliptic-curve project contains the functions to generate elliptic curves and

construct pairing over the curve. It is a modification and extension of the JPBC

library. It includes interfaces and classes to access the underlying algebraic structures

such as fields, pairing, etc. It provides the addition and multiplication operations in

rings and fields, group addition and group multiplication for groups elements, pairing

operations to manipulate pairing. This project is compiled into a .jar file and shared

by the server and client. The id-based-encryption-server project is the simplest of

three. Its setParemeter() function will setup and publish a pairing based on the curve

paramenters(rBits, qBits). All the server does is waiting for key generation request.

54

Its generateKeyPair() function takes input an user email address and returns a pair

of public/private key to that user. The id-based-encryption-server project has a data

directory to store the curve parameters, master key and records of user accounts. For

security reason, the data directory should be encrypted itself or configured with proper

access control. The id-based-encryption-server project also includes a serverLog

directory upon installation. The id-based-encryption-client project consists of several

packages as well. It includes a clientLog directory for logs, a data directory to store

user’s key pair and serve published curve parameters, and a download directory for

storing email attachments. Its client.crypto package handles encryption/decryption

key calculation and AES encryption and decryption operations. Its client.email pack-

age refers to JavaMail library, handles all email related operations and infrastructures.

The client.gui package is a graphic interface that simplifies the user’s interaction with

the client program. It provides a familiar email environment to users and makes the

encryption, decryption easy to use for less technique skilled users.

55

CHAPTER 6

PERFORMANCE EVALUATION AND SECURITY

ANALYSIS

We evaluate the performance of our IDE system based on two factors: speed and

storage. Speed is the computation time actual algorithms take to run. Storage is

primarily a measure of memory needed for store and transfer cipher text. In addition

to performance evaluation, we also show the security level our IDE system provides

with smaller key size.

6.1 Performance

Since an IBE scheme has four algorithms, we focus on the performance of each

algorithm:

• server parameter and master key setup

• private and public key pair generation

• encryption speed and cipher text length

• decryption speed

6.1.1 Testing Environment

OS: Windows 7 home premiun, 64-bit operating System

56

Model: Inspiron 1764

Processor: Intel(R) Core(TM)i3CPU M330@2.13GHz

RAM: 4.00GB(3.86GB Usable)

6.1.2 Server Parameter Setup and Master Key Generation

The elliptic curve and pairing setup algorithm should only be run once with chosen

rBits, qBits, and masterKey length. For testing purposes, we ran it a few times

with different rBits, qBits, and masterKey lengths and recorded the execution time

under different sizes of each parameter (See Server Algorithms section for definitions

of rBits, qBits).

Table 6.1: Server Setup Test Results
rBits(bits) qBits(bits) masterKey(bits) Time(milliSecond)

160 256 256 907
160 256 512 923
256 512 256 978
256 512 512 1239

6.1.3 Key Pair Generation

After the server runs the setup algorithm, the curve parameters and master key are

stored to different files. When the server receives a key generating request, it reads

the curve parameters, and the master key from the files. Then it takes a user’s email

address as input, and returns a pair of public/private keys to that user. Again, for

testing purposes, we ran the setup algorithm more than once to get different curve

parameters and master keys.

57

Table 6.2: Key Pair Generation Test Results
rBits(bits) qBits(bits) masterKey(bits) EmailAddress Time(milliSecond)

256 512 256 fiona201301@gmail.com 109
256 512 512 fiona201301@gmail.com 156
256 512 256 fionazeng@u.boisestate.edu 125
256 512 512 fionazeng@u.boisestate.edu 167

6.1.4 Emails with Single Receiver without Attachment

This table shows the connection time (Conn.), key derivation (Der.), encryption

(Enc.) and decryption (Dec.) time for emails with only one recipient. The connection

time is the time it takes for the email client to connect to an email server using java

mail API. We also take the cipher text size as part of our measurements.

Table 6.3: Test Results for Emails with Single Recipient without Attachment
Cipher Sender Recipient

Msg. size Conn. Der. Enc. Conn. Der. Dec.
(char) (char) (ms) (ms) (ms) (ms) (ms) (ms)

524 875 4493 157 198 4926 153 698
3009 5670 4953 168 224 4583 172 813
10658 12944 5614 153 229 4922 144 935

6.1.5 Emails with Single Receiver with Attachments

From above table, we can see that the connection time is pretty stable around 4 to

6 seconds, so we do not list the connection time here. The encryption algorithm was

able to encrypt a randomly generated file with size of 1GB, but the file could not be

attached to an email since it was so big.

We use AES to encrypt email message and attachments. AES, as a block cipher, does

not change the size of encrypted message. The output size should be the same as the

input size. However, AES, being a block cipher, requires the input to be multiple of

58

Table 6.4: Test Results for Emails with Single Recipient with Attachments
File Cipher File Sender Recipient
size size type Der. Enc. Der. Dec.

(bytes) (bytes) (ms) (ms) (ms) (ms)
25,366 25,360 word doc 160 66 167 93
128,771 128,768 image(png) 189 132 156 398
140,297 140,288 PDF 160 164 160 401

3,303,581 3,303,568 image(jpg) 166 755 162 1993

block size (16 bytes). For inputs that are not multiple of 16 bytes, padding schemes are

used to round up the input to the next module of 16. According to this formular [41]

long size = inputSizeInBytes;

long postAESSize = size + (16 - (size % 16));

The cipher text will be max 16 more bytes than the plain text. It may vary a little

depending on the padding scheme. For an email message, because we append the

random number r at the end of the message, the cipher text length is the length of

original message, plus the padding, plus the length of r. For an attachment, the size

of an encrypted file should be no more than 16 bytes than the size of original file.

Interestingly, from our experiment an encrypted file is actually few bytes smaller than

the original file in size.

6.1.6 Emails with Multiple Receivers

Emails were sent to multiple recipients to measure how the system scaled with the

number of email recipients. The marginal increase in transmission time was consistent

for larger numbers of recipients and so, for the sake of brevity, we show only the results

of two and three recipient emails. The connection times were also omitted because of

the lack of variance in the values.

59

Table 6.5: Test Results for Emails with Two Recipients
Sender Recipient1 Recipient2

Msg. Der. Enc. Der. Dec. Der. Dec.
(char) (ms) (ms) (ms) (ms) (ms) (ms)

524 335 202 103 681 98 662
3009 349 226 96 892 112 824
10658 389 276 101 1064 116 922

Table 6.6: Test Results for Emails with Three Recipients
Sender Recipient1 Recipient2 Recipient3

Msg. Der. Enc. Der. Dec. Der. Dec. Der. Dec.
(char) (ms) (ms) (ms) (ms) (ms) (ms) (ms) (ms)

524 477 192 105 668 109 662 102 676
3009 498 212 96 876 112 824 107 864
10658 481 296 101 998 116 922 112 972

6.1.7 Results Summary

We can summarize the test results as following:

• The system parameters and master key setup algorithm should only run once

by the KGC. With rBits=256, qBits=512 and masterKey=512 bits, it takes less

than two seconds to finish.

• It takes less than one second to generate a key pair for a typical user based on

the user’s email address.

• It takes 4 to 6 seconds to connect to an email server via Java Mail library. It only

takes a fraction of the connection time to encrypt a message. The decryption

operation takes 2 to 4 times longer than the encryption operation, but it is still

very efficient compared to the connection time. The rate of encryption is about

384 bytes per ms.

60

• Cipher size is the same or slightly bigger than the original plain text size. There

is no storage or space concern.

• For group emails, the encryption key derive time increases proportional to the

number of receivers. This is because the sender needs to calculate xi from i=0,

upon to i=n and needs to calculate yi for each receiver.

6.2 Security

The security of elliptic-curve-based cryptosystems are not well understood compared

to RSA related public-key cryptosystems. Due in large part to the abstruse nature

of elliptic curves, few cryptographers understand elliptic curves. Many cryptographic

schemes treat elliptic curve and pairings as a black box, focus on purely cryptographic

aspects and not mathematical and algorithmic subtleties. Since the details of elliptic

curves and pairings, particularly their selection and implementation, can be quite

complex, when we do the security analysis we are making some assumptions regarding

the properties of elliptic curves and pairings.

Master key security

RSA public-key systems are secure assuming that it is difficult to factor a large integer

composed of two or more large prime factors. For elliptic-curve-based cryptosystems,

it is assumed that finding the discrete logarithm of a random elliptic curve element

with respect to a publicly known base point is infeasible. If the elliptic curve groups

is described using multiplicative notation, then the elliptic curve discrete logarithm

problem is:

given points P and Q in the group, find a number that Pk = Q;

k is called the discrete logarithm of Q to the base P. The security of our master

61

key(s) depends on the ability to compute point multiplications and the inability to

compute the multiplicand given the original and product points. Recall that for each

user’s key pair, one’s public key is a point that mapped from the hash of one’s email

address and one’s private key is a point equals to the multiplication of one’s public

key and master key. The point multiplication is efficiently computed so the private

key generation is very efficient. But on the other hand, given the base point (one’s

public key), and the product point (one’s private key), computing the master key

requires solving the discrete logarithm in elliptic curve which is infeasible.

Encryption and decryption key security

The security of our encryption and decryption key is based on the bilinear Diffie-

Hellman problem.

Let ê be a bilinear pairing on (G1, GT). The bilinear Diffie-Hellman problem (BDHP)is

the following [43]

• E: Elliptic curve defined over Fq.

• P: Point in E(Fq) of prime order r.

• k: Smallest positive integer such that r divides qk-1 .

• µr: Group of rth roots of unity in Fqk.

• Q: Order r-point in E(Fqk) such that Q not in P

• e:ê(P,Q)→ µr: bilinear, non-degenerate map

BDHP: Given P, aP, bP, cP and Q, compute ê(P, P)abc.

The hardness of the BDHP implies the hardness of the Diffie-Hellman problem in both

G1 and GT groups. If the Diffie-Hellman problem in G1 can be efficiently solved, then

62

one could solve an instance of the bilinear Diffie-Hellman problem by computing P ab

and then ê(P ab, P c) = ê(P, P)abc. Also, if the Diffie-Hellman problem in GT can be

efficiently solved, then the bilinear Diffie-Hellman problem instance could be solved by

computing g= ê(P, P), gab = ê(P a, P b), gc= ê(P, P c) and then gabc. An eavesdropper

who wishes to compute the shared secret key from some known public keys is faced

with the task of solving an instance of the bilinear Diffie-Hellman problem. No one

knows of any way to solve the BDHP except by finding discrete logs in both G1 and

GT groups.

Security of AES

After a key establishment is made, this key is used as a symmetric key to encrypt and

decrypt data via AES. One way to compute the shared secret key is solving the bilinear

discrete logarithm problem. Another way is by using a brute-force attack. There is

a physical argument that a 128-bit symmetric key using AES is computationally

secure against brute-force attack: the faster supercomputer can do 10.51 x 1015

floating point operations per second, it will takes 1.02 x 1018 years to crack AES with

128-bit key [44]. There are records that AES has been cracked by National Security

Agency(NSA). While NSA has all the computational resources and capabilities to

crack AES, this was possibly also aided by the fact that the cryptosystems that use

AES have implementation flaws.

63

CHAPTER 7

CONCLUSION

Nowadays almost everybody has one or more email accounts. Individuals rely on

emails to communicate. Businesses can’t conduct business today without emails.

Email services are free and very convenient to use. However, for privacy-sensitive

users, the privacy protection of emails provided by the email service providers is

usually under their expectation. Most emails are currently transmitted in plain text

over Internet or other networks. They can be intercepted easily by others. Between

the sender and the recipients, emails pass through many servers and routers. In

addition, mail servers regularly conduct unprotected backups of emails that passes

through. Potentially, every unencrypted email sent over networks or stored on a mail

server can be read, copied or altered. There is a strong need for secure email delivery.

Some email service providers such as Google’s gmail did take some actions to

protect users privacy by using https protocol that encrypts emails as they travel

between web browsers and gmail servers. It helps protect data from being snooped

by third parties during transmission. For highly privacy sensitive users, they may

not be satisfied by https because this is not end-to-end encryption. There are other

end-to-end encryptions available such as PGP. The downside of PGP is that most

people struggle with finding and verifying other peoples public keys, and sharing their

own keys.

64

This thesis presents the implementation of an identity-based encryption scheme

based on elliptic curve and pairing. Our IDE system is end-to-end encryption so the

emails are stored in encrypted format on the email servers. Such a system does require

a key generation server, but it eliminates the need for certificates and some of the

problems associated with them. If our IDE system is adopted by closed organizations

such as large corporations or banks, they can have their own KGC. For open KGC,

it is a little bit harder to establish a system that everyone trusts.

The benefits promised by elliptic curve and pairing-based cryptosystems is smaller

key size, reducing storage and transmission requirements. Small keys are important,

especially in a world where more and more cryptography is done on less powerful

devices like mobile phones. While multiplying two prime numbers together is easier

than factoring the product into its component parts, when the prime numbers start to

get very long, even just the multiplication step can take some time on a low powered

device. While we could likely continue to keep RSA secure by increasing the key

length, that comes with a cost of slower cryptographic performance on the client. On

another hand, elliptic-curve-based cryptosystem is not well established compared to

RSA. RSA relies on the hardness of factorization, which has been studied for 2500

years. In comparison, discrete logarithm itself has been studied for long time but

discrete logarithm on elliptic curves only sport about 30 years of research.

65

REFERENCES

[1] “How PGP works” http://searchsecurity.techtarget.com/definition/Pretty-Good-
Privacy, 1991.

[2] eds. L. Cranor and G. Simson. O’Reilly, “In Security and Usability: Designing
Secure Systems that People Can Use,” 2005, pp. 679-702.

[3] D. Boneh, B. Lynn, and H. Shacham. Short signatures from the Weil pairing.
Journal of Cryptology, 17(1):297319, 2004.

[4] http://doctrina.org/How-RSA-Works-With-Examples.html

[5] Burt Kaliski, “The Mathematics of the RSA Public-Key Cryptosystem,”
http://www.mathaware.org/mam/06/Kaliski.pdf.

[6] M. Bellare, A. Desai, E. Jokipii, and P. Rogaway. “A Concrete Security Treatment
of Symmetric Encryption: Analysis of the DES Modes of Operatio n”. Proceedings
of the 38th Symposium on Foundations of Computer Science, IEEE, 1997.

[7] “Symmetric Encryption” http://cr.yp.to/bib/2004/bellare-chap4.pdf

[8] Al-Riyami, Sattam S., and Kenneth G. Paterson. “CBE from CL-PKE: A
generic construction and efficient schemes.” Public Key Cryptography-PKC 2005.
Springer Berlin Heidelberg, 2005. 398-415.

[9] Sattam S. Al-Riyami “Cryptographic Schemes based on Elliptic Curve Pairings”
http://www.isg.rhul.ac.uk

[10] S.S. Al-Riyami and K.G. Paterson. “Authenticated three party key agreement
protocols”. International Conference on Cryptography and Coding, pages 332359

[11] American National Standards Institute ANSI X9.42. “Public key cryptography
for the financial services industry: Agreement of symmetric keys using discrete
logarithm cryptography”, 2001.

[12] American National Standards Institute ANSI X9.63. “Public key cryptography
for the financial services industry: Key agreement and key transport using elliptic
curve cryptography,” 2001.

66

[13] P.S.L.M. Barreto, H.Y. Kim, B. Lynn, and M. Scott. “Efficient algorithms for
pairing-based cryptosystems.” Advances in Cryptology CRYPTO 2002, volume
2442 of Lecture Notes in Computer Science , pages 354368.

[14] R. Barua, R. Dutta, and P. Sarkar. “An n-party key agreement scheme
using bilinear map”. Cryptology ePrint Archive, Report 2003/062, 2003.
http://eprint.iacr.org/

[15] Changyu Dong “Math in Network Security: A Crash Course” www.doc.ic.ac.uk

[16] L. Adleman and M. Huang, Function field sieve methods for d iscrete logarithms
over finite fields, Information and Computation, 151 (1999)

[17] “Elliptic Curves,” http://www-math.ucdenver.edu

[18] I.F.Blake, G, Seroussi and N.P.Smart, “Elliptic Curves in Cryptograhy” Cam-
brige University Press, 1999

[19] R. Balasubramanian and N. Koblitz. “The improbability th at an elliptic curve
has subexponential discrete log problem under the Menezes-Oka moto-Vanstone
algorithm.” Journal of Cryptology, 11(2):141145, Spring 1998

[20] A. J. Menezes, S. A. Vanstone, and P. C. V. Oorschot. “Handbook of Applied
Cryptography.” CRC Press, Inc., Boca Raton, FL, USA, 1996

[21] J. H. Silverman. “The arithmetic of elliptic curves.” Springer-Verlag, Berlin, 1995

[22] R. Sakai, K. Ohgishi, and M. Kasahara. “Cryptosystems based on pairing. In
The 2000 Symposium on Cryptography and Information Security” , Okinawa,
Japan, 2000.

[23] Ben Lynn. “On the implementation of pairing-based cryptosystems”, Ph.D.
Disertation, Stanford University, 2007

[24] D. Page, N. P. Smart, and F. Vercauteren. “ A comparison of MNT curves
and supersingular curves.” Cryptology ePrint Archive, Report 2004/165, 2004.
http://eprint.iacr.org

[25] V. Miller. “The Weil pairing, and its efficient calculation.” Journal of Cryptol-
ogy,17(4):235262, 2004

[26] A. Menezes, T. Okamoto, and S. Vanstone. “Reducing elliptic curve logarithms
to logarithms in a finite field.” Proceedings of the twenty-third annual ACM
symposium on Theory of computing , New York, NY, USA, 1991.

67

[27] A. K. Lenstra and E. R. Verheul. “Selecting cryptographic key sizes.” Journal of
Cryptology, 2001.

[28] R. L. Rivest, A. Shamir, and L. Adleman. “A method for obtaining digital
signatures and public-key cryptosystems.” Communications of the ACM, 1978.

[29] A. Shamir, “Identity-based cryptosystems and signature schemes,” Advances
in Cryptology-Crypto’84,Lecture Notes in Computer Science,Vol.196,Springer-
Verlag,pp. 47-53,1984

[30] S.Tsuji and T.Itoh, “An ID-based cryptosystem based on the discrete logarithm
problem”, IEEE Journal on Selected Areas in Communication ,vol.7,no.4,pp.467-
473,1989

[31] U.Maurer and Y.Yacobi,“Non-interactive public-key cryptography”, in Advances
in Cryptology-Crypto’91,Lecture Notes in Computer Science,Vol.547,Springer-
Verlag, pp.498-507,1991

[32] Dan Boneh, Matthew K. Franklin, “Identity-Based Encryption from the Weil
Pairing,” Advances in Cryptology - Proceedings of CRYPTO 2001 (2001)

[33] P. S. L. M. Barreto, H. Y. Kim, B. Lynn, and M. Scott. “Efficien t algorithms for
pairing- based cryptosystems.” In CRYPTO 02: Proceedings of the 22nd Annual
International Cryptology Conference on Advances in Cryptology , pages 354368,
London, UK, 2002.

[34] D. R. Stinson. “Some baby-step giant-step algorithms for the low hamming
weight discrete logarithm problem.” In Math, pages 379391, 2002

[35] D. Coppersmith. “Fast evaluation of logarithms in fields of characteristics two.”
In IEEE Transactions on Information Theory , volume 30, pages 587594, 1984.

[36] BLS signatures https://crypto.stanford.edu/pbc/manual

[37] Antoine Joux “A One Round Protocol for Tripartite Diffie-Hellman”
http://cgi.di.uoa.gr/ aggelos/crypto/page4/assets/joux-tripartite.pdf

[38] Dan Boneh, Ben Lynn, and Hovav Shacham “Short signatures from the Weil
pairing” https://www.iacr.org/archiveasiacrypt2001/22480516.pdf

[39] D. Freeman, M. Scott, and E. Teske. “A taxonomy of pairing -friendly elliptic
curves.” preprint, 2006.

[40] A. Menezes, T. Okamoto, and S. Vanstone. “Reducing ellip tic curve logarithms
to logarithms in a finite field.” Proceedings of the twenty-third annual ACM
symposium on Theory of computing, pages 8089, New York, NY, USA, 1991.

68

[41] “Announcing the ADVANCED ENCRYPTION STANDARD (AES).” Federal
Information Processing Standards Publication 197. United States National Insti-
tute of Standards and Technology (NIST). November 26, 2001

[42] Avi Kak. “AES: The Advanced Encryption Standard,“ Lecture Notes on Com-
puter and Network Security, https://engineering.purdue.edu/kak/compsec

[43] John Bethencourt. “Intro to Bilinear Maps,” http://www.upl.cs.wisc.edu

[44] Mohit Arora. “How secure is AES against brute force attacks,”
http://www.eetimes.com

[45] D. Page, N. P. Smart, and F. Vercauteren.“ A comparison of MNT curves and
supersingular curves.” Cryptology ePrint Archive, 2004. http://eprint.iacr.org/

[46] Jyh-haw Yeh,“ P2P email encryption by an identity-based one-way group key
agreement protocol”, Boise State University, 2014

[47] E. Verheul. “Evidence that XTR is more secure than supers ingular elliptic curve
cryptosystems.” Journal of Cryptology, 17(4):277296, 2004

[48] K. Rubin and A. Silverberg. “Supersingular abelian vari eties in cryptology.” In
Advances in Cryptology Crypto 2002 , volume 2442 of Lecture Notes on Computer
Science, 2002

69

APPENDIX A

JAVA SOURCE CODE OF SOME OF THE MAIN

ALGORITHMS

The following are the java implementations of various algorithms we introduced

earlier.

A.1 Curve and Pairing Functions

hash to a point on the curve

public CurveElement setFromHash(byte[] source, int offset, int length) {

infFlag = 0;

x.setFromHash(source, offset, length);

IElement t = field.getTargetField().newElement();

for (;;) {

t.set(x).square().add(curveField.a).mul(x).add(curveField.b);

if (t.isSqr())

break;

x.square().add(t.setToOne());

}

y.set(t).sqrt();

if (y.sign() <0)

70

y.negate();

if (curveField.cofac != null)

mul(curveField.cofac);

return this;

}

twice a group point element

public IElement[] twice(IElement[] elements) {

int i;

int n = elements.length;

IElement[] table = new IElement[n];

IElement e0, e1, e2;

CurveElement q, r;

q = (CurveElement) elements[0];

e0 = q.getX().getField().newElement();

e1 = e0.duplicate();

e2 = e0.duplicate();

for (i = 0; i <n; i++) {

q = (CurveElement) elements[i];

table[i] = q.getY().getField().newElement();

if (q.infFlag != 0) {

q.infFlag = 1;

71

continue;

}

if (q.getY().isZero()) {

q.infFlag = 1;

continue;

}

}

for (i = 0; i <n; i++) {

q = (CurveElement) elements[i];

table[i].set(q.getY()).twice();

if (i>0)

table[i].mul(table[i - 1]);

}

e2.set(table[n - 1]).invert();

for (i = n - 1; i >0; i–) {

q = (CurveElement) elements[i];

table[i].set(table[i - 1]).mul(e2);

e2.mul(q.getY()).twice();

}

table[0].set(e2);

for (i = 0; i <n; i++) {

q = (CurveElement) elements[i];

if (q.infFlag != 0)

continue;

72

e2.set(q.getX()).square().mul(3).add(a).mul(table[i]);

e1.set(q.getX()).twice();

e0.set(e2).square().sub(e1);

e1.set(q.getX()).sub(e0).mul(e2).sub(q.getY());

q.getX().set(e0);

q.getY().set(e1);

q.infFlag = 0;

}

return elements;

}

choose rbits as prime for efficiency

public static BigInteger generateSolinasPrime(int bits, Random random) {

BigInteger r, q;

int exp2, sign1;

while (true) {

r = BigInteger.ZERO;

if (random.nextInt(Integer.MAX VALUE) % 2 != 0) {

exp2 = bits - 1;

sign1 = 1;

} else {

exp2 = bits;

sign1 = -1;

}

r = r.setBit(exp2);

73

q = BigInteger.ZERO

.setBit((random.nextInt(Integer.MAX VALUE) % (exp2 - 1)) + 1);

if (sign1 >0) {

r = r.add(q);

} else {

r = r.subtract(q);

}

if (random.nextInt(Integer.MAX VALUE) % 2 != 0) {

r = r.add(BigInteger.ONE);

} else {

r = r.subtract(BigInteger.ONE);

}

if (r.isProbablePrime(10))

return r;

}

}

A.2 Server Algorithms

server side curve and pairing parameters

public CurveParameters generate() {

boolean found = false;

BigInteger q;

BigInteger r;

74

BigInteger h = null;

int exp1 = 0; int exp2 = 0;

int sign0 = 0; int sign1 = 0;

do {

r = BigInteger.ZERO;

if (random.nextInt(Integer.MAXVALUE) % 2 != 0) {

exp2 = rbits - 1;

sign1 = 1;

} else {

exp2 = rbits;

sign1 = -1;

}

r = r.setBit(exp2);

q = BigInteger.ZERO;

exp1 = (random.nextInt(Integer.MAXVALUE) % (exp2 - 1)) + 1;

q = q.setBit(exp1);

if (sign1 >0) {

r = r.add(q);

} else {

r = r.subtract(q);

}

if (random.nextInt(Integer.MAXVALUE) % 2 != 0) {

sign0 = 1;

r = r.add(BigInteger.ONE);

} else {

75

sign0 = -1;

r = r.subtract(BigInteger.ONE);

}

if (!r.isProbablePrime(10))

continue;

for (int i = 0; i <10; i++){

q = BigInteger.ZERO;

int bit = qbits - rbits - 4 + 1;

if (bit <3)

bit = 3;

q = q.setBit(bit);

h = BigIntegerUtils.getRandom(q, random).multiply(BigIntegerUtils.TWELVE);

q = h.multiply(r).subtract(BigInteger.ONE);

if (q.isProbablePrime(10)) {

found = true;

break;

}

}

} while (!found);

DefaultCurveParameters params = new DefaultCurveParameters();

params.put(”type”, ”a”);

params.put(”q”, q.toString());

params.put(”r”, r.toString());

params.put(”h”, h.toString());

params.put(”exp1”, String.valueOf(exp1));

76

params.put(”exp2”, String.valueOf(exp2));

params.put(”sign0”, String.valueOf(sign0));

params.put(”sign1”, String.valueOf(sign1));

if (generateCurveFieldGen) {

Field Fq = new ZrField(random, q);

CurveField curveField = new CurveField¡Field¿(random, Fq.newOneElement(),

Fq.newZeroElement(), r, h);

params.put(”genNoCofac”, Base64.encodeBytes(curveField.getGenNoCofac().toBytes()));

}

return params;

}

system parameter setup

1. TypeACurveGenerator cg = new TypeACurveGenerator(rBits, qBits);

2. CurveParameters param = cg.generate();

3. Pairing pair = PairingFactory.getPairing(curveFileName);

Our pairings are constructed on the curve y2 = x3 + x over the field Fq for some

prime q = 3 mod 4. Both G1 and G2 are the group of points E(Fq), so this pairing is

symmetric. The order r is some prime factor of q + 1. To be secure, generic discrete

log algorithms must be infeasible in groups of order r, and finite field discrete log

algorithms must be infeasible in finite fields of order q2, so we have rbits = 256 and

qbits = 512.

The CurveGenerator is initialized with the input r and q, after it is initialized, we

call its generate() method to generate the pairing paramsters and store them in a file

77

for later use. A pairing parameter include properties of curve type (Type A), r, and

q values. The group order r is rbits(256 bit) long, and the order of the base field q is

qbits(512 bit) long. Calling the pairing parameters’ toString() method will return a

string presentation of the curve in the form of:

type a

q 13878449027838634308485324894656547831531975681771763457230535958189

9027838634308485324894656547831531975681771763457230535958189662618198

48557131305346521926416909465925305899119328833490556705337479337933741

3504974113504991091

r 57896051520404444502349473890026478309277103328569307

2799390998162036604447839292541901153457896051520404444

502349279939099816203660444783929254190115347166480788

619263

h 239713221599359313508311410217288199331027522515543912423182424377100009171084

exp1 232

exp2 255

sign0 -1

sign1 1

Once the pairingParamaters is generated, an instance of Pairing interface can be

obtained from the pairingParamaters. the Pairing interface provides methods to

access the algebraic structure involved in the pairing computation :

/* Return Zr */

Field Zr = pairing.getZr();

/* Return G1 */

Field G1 = pairing.getG1();

78

/* Return G2 */

Field G2 = pairing.getG2();

/* Return GT */

Field GT = pairing.getGT();

generate client key pair

public String generateKeyPair(String email){

.....

byte[] hash = Hash(account.emailAddress);

IElement elePubKey = pair.getG1().newElement() .setFromHash(hash, 0, hash.length);

account.publicKey = elePublicKey.toBytes();

account.privateKey = elePublicKey.getImmutable().mul(masterKey).toBytes();

.....

return account.toString();

}

A.3 Client Algorithms

derive encryption key

public BigInteger getEncryptKeyAB(String receiverEmail, BigInteger r) throws No-

SuchAlgorithmException {

byte[] hash = Hash(receiverEmail);

IElement receiverPubElement = clientPairing.getG1().newElement();

receiverPubElement.setFromHash(hash, 0, hash.length);

BigInteger keyAB = clientPairing.pairing(clientPriElement, receiverPubElement)

79

.pow(r)

.toBigInteger()

.xor(clientPairing.pairing(clientPriElement, receiverPubElement)

.toBigInteger());

return keyAB; }

derive decryption key

public BigInteger getDecryptKeyBA(String senderEmail, BigInteger r) throws No-

SuchAlgorithmException {

byte[] hash = Hash(senderEmail);

IElement senderPubElement = clientPairing.getG1().newElement();

senderPubElement.setFromHash(hash, 0, hash.length);

BigInteger keyBA = clientPairing

.pairing(senderPubElement.getImmutable().mul(r), clientPriElement)

.toBigInteger()

.xor(clientPairing.pairing(senderPubElement, clientPriElement)

.toBigInteger());

return keyBA;

}

A.4 Group Email Algorithms

derive encryption group key

public BigInteger getEncryptGroupKey(String senderEmail, ArrayList<String >re-

ceiversEmails, BigInteger r) throws NoSuchAlgorithmException {

80

ArrayList<BigInteger >xList = new ArrayList<BigInteger >();

byte[] hashSender = Hash(senderEmail);

IElement senderPubElement = clientPairing.getG1().newElement();

senderPubElement.setFromHash(hashSender, 0, hashSender.length);

BigInteger xSender = clientPairing.pairing(clientPriElement, senderPubElement

.getImmutable()

.mul(r)).toBigInteger();

for (int i = 0; i < receiversEmails.size(); i++) {

byte[] ithReceiverHash = Hash(receiversEmails.get(i));

IElement ithReceiverPubElement = clientPairing.getG1().newElement();

ithReceiverPubElement.setFromHash(ithReceiverHash, 0, ithReceiverHash.length);

BigInteger xi = clientPairing.pairing(clientPriElement, ithReceiverPubElement

.getImmutable()

.mul(r)).toBigInteger();

xList.add(xi);

}

BigInteger groupKey = xSender;

for (int j = 1; j < xList.size(); j++) {

groupKey = groupKey.xor(xList.get(j));

}

BigInteger yValue=null;

while (yList.size() < xList.size()) {

yValue = xSender;

for (int k = 0; k < xList.size(); k++) {

if (k != yList.size()) {

81

yValue = yValue.xor(xList.get(k));

}

}

yList.add(yValue);

}

return groupKey;

}

derive decryption group key

public BigInteger getDecryptGroupKey(String senderEmail, BigInteger r, BigInteger

yi) throws NoSuchAlgorithmException {

byte[] hash = Hash(senderEmail);

IElement senderPubElement = clientPairing.getG1().newElement();

senderPubElement.setFromHash(hash, 0, hash.length);

BigInteger key = clientPairing.pairing(senderPubElement

.getImmutable().mul(r), clientPriElement)

.toBigInteger();

return yi.xor(key);

}

A.5 Using Java Mail

connect to email server

connectToServer {

82

Properties props = System.getProperties();

props.setProperty(”mail.store.protocol”, ”imaps”);

Session session = Session.getInstance(props, null);

store = session.getStore(”imaps”);

store.connect(”imap.gmail.com”, address, password);

}

send email using java mail message class

SendEmail{

...

msg.setFrom(new InternetAddress(sender));

msg.addRecipient(Message.RecipientType.TO, new InternetAddress(receiver));

msg.setSubject(subject);

Transport.send(msg);

...

}

read email using java mail message class

ReadEmail{

...

for (Message msg : messages) {

ArrayList<String>list = new ArrayList<String>();

MimeMessage m = (MimeMessage) msg;

mailId = m.getMessageID();

from = InternetAddress.toString(msg.getFrom());

83

recipient = InternetAddress.toString(msg .getRecipients(Message.RecipientType.TO));

String replyTo = InternetAddress.toString(msg.getReplyTo());

sendDate = msg.getSentDate().toString();

subject = msg.getSubject();

...

}

}

send email with attachment use mimemessage and multipart classes

sendEmailWithAttachments{

....

Message msg = new MimeMessage(session);

Multipart multipart = new MimeMultipart();

MimeBodyPart messageBodyPart = new MimeBodyPart();

messageBodyPart.setContent(msgBody, ”text/plain”);

multipart.addBodyPart(messageBodyPart);

if (fileNamesWithPath != null) {

if (fileNamesWithPath.size() >0) {

MimeBodyPart[] attachParts = new MimeBodyPart[fileNamesWithPath .size()];

for (int i = 0; i ¡ fileNamesWithPath.size(); i++) {

attachParts[i] = new MimeBodyPart();

attachParts[i].attachFile(fileNamesWithPath.get(i));

multipart.addBodyPart(attachParts[i]);

}

}

84

}

msg.setContent(multipart);

msg.setFrom(new InternetAddress(sender));

msg.addRecipient(Message.RecipientType.TO, new InternetAddress(receiver));

msg.setSubject(subject);

Transport.send(msg);

}

read email with attachment use mimemessage and multipart classes

readEmailWithAttachments {

...

for (Message msg : messages) {

ArrayList<String>list = new ArrayList<String>();

MimeMessage m = (MimeMessage) msg;

mailId = m.getMessageID();

from = InternetAddress.toString(msg.getFrom());

recipient = InternetAddress.toString(msg

.getRecipients(Message.RecipientType.TO));

String replyTo = InternetAddress.toString(msg.getReplyTo());

sendDate = msg.getSentDate().toString();

subject = msg.getSubject();

Object content = msg.getContent();

if (content instanceof Multipart) // has attachment

{

int parts = ((Multipart) content).getCount();

85

count = parts - 1;

contentString = ((Multipart) content).getBodyPart(0)

.getContent().toString();

for (int i = 1; i <parts; i++) {

Part part = ((Multipart) content).getBodyPart(i);

String fileName = part.getFileName();

list.add(fileName);

}

...

}

}

}

download email attachments

downloadAttachment{

.....

for (Message msg : messages) {

....

Object content = msg.getContent();

if (content instanceof Multipart) // has attachment

{

int parts = ((Multipart) content).getCount();

count = parts - 1;

contentString = ((Multipart) content).getBodyPart(0)

.getContent().toString();

86

for (int i = 1; i <parts; i++) {

Part part = ((Multipart) content).getBodyPart(i);

String fileName = part.getFileName();

list.add(fileName);

}

} else{

...

}

}

}

87

APPENDIX B

ADVANCED ENCRYPTION STANDARD ALGORITHM

The Advanced Encryption Standard (AES) was an encryption algorithm for securing

sensitive but unclassified material by U.S. Government agencies, and it eventually

become the encryption standard for commercial transactions in the private sector [41].

AES calls for a symmetric algorithm using block encryption of 128 bits in size

(block cipher of 16 bytes). Unlike public-key cryptography, which use a pair of keys,

symmetric-key cryptography use the same key (KeyAB=KeyBA in our IBE system)

to encrypt and decrypt data. The encrypted data returned by block ciphers have the

same number of bits that the input data had. Iterative ciphers use a loop structure

that repeatedly performs permutations and substitutions of the input data.

The AES algorithm was required to offer security of a sufficient level to protect data

for the next 20 to 30 years. It was to be easy to implement in hardware and software,

as well as in restricted environments such as smart card and offer good defenses

against various attacks [41]. AES supporting key sizes of 128, 192 and 256 bits. In

our IBE system, we use the first 192 bits of KeyAB to encrypt the email and use

the first 192 bits of KeyBA to decrypt the email. The key size used for an AES

cipher specifies the number of repetitions of transformation rounds that convert the

plain text into the final output-cipher text. The number of cycles of repetition are as

follows:

88

10 cycles of repetition for 128-bit keys.

12 cycles of repetition for 192-bit keys.

14 cycles of repetition for 256-Tbit keys.

Each round consists of several processing steps, each containing four similar but

different stages, including one that depends on the encryption key itself. A set

of reverse rounds are applied to transform cipher text back into the original plain

text using the same encryption key. The AES encryption routine begins by copying

the 16-byte (128 bit block size) input array into a 4 X 4 byte matrix named State

and the AES encryption algorithm is operated on State[] and can be described in

pseudocode [42].

Cipher Algorithm Pseudocode

Cipher(byte[] input, byte[] output)

{

byte[4,4] State;

copy input[] into State[]

AddRoundKey for (round = 1; round <Nr-1; ++round)

{

SubBytes

ShiftRows

MixColumns

AddRoundKey

}

SubBytes

ShiftRows

AddRoundKey

89

copy State[] to output[]

}

The encryption algorithm performs a preliminary processing step that’s called Ad-

dRoundKey in the specification. AddRoundKey performs a byte-by-byte XOR op-

eration on the State matrix using the first four rows of the key schedule, and XORs

input State[r,c] with round keys table w[c,r]. The main loop of the AES encryption

algorithm performs four different operations on the State matrix, called SubBytes,

ShiftRows, MixColumns, and AddRoundKey in the specification. The AddRoundKey

operation is the same as the preliminary AddRoundKey except that each time Ad-

dRoundKey is called, the next four rows of the key schedule are used. The SubBytes

routine is a substitution operation that takes each byte in the State matrix and

substitutes a new byte determined by the Sbox table. ShiftRows is a permutation

operation that rotates bytes in the State matrix to the left. The MixColumns

operation is a substitution operation that is the trickiest part of the AES algorithm to

understand. It replaces each byte with the result of mathematical field additions and

multiplications of values in the byte’s column. The addition and multiplication are

special mathematical field operations, not the usual addition and multiplication on

integers. The four operations SubBytes, ShiftRows, MixColumns, and AddRoundKey

are called inside a loop that executes Nr times (the number of rounds for a given key

size) less 1. The number of rounds that the encryption algorithm uses is either 10,

12, or 14 and depends on whether the seed key size is 128, 192, or 256 bits. For

example, our key size is 192 bits so Nr equals 12, the four operations are called 11

times. After this iteration completes, the encryption algorithm finishes by calling

SubBytes, ShiftRows, and AddRoundKey before copying the State matrix to the

output parameter.

90

APPENDIX C

GUI

The following are the graphic user interfaces that most email users will feel familiar

with since they are similar to most email web interface.

C.0.1 User Login Interface

The entry point of the client program. it is similar to most of the website email log-in

page.

C.0.2 Inbox Interface

After successful login, the inbox panel reads emails from inbox folder from the email

server.

91

C.0.3 Email Compose Interface

The compose panel letting an user to compose an email. the ”Attach Files” button

enables an user to select files to attach from file system. An user has options to send

email and attachments in plain text or encrypted format.

92

C.0.4 Individual Email Message Interface

The email message panel opens a selected email. the Forward and ReplyTo buttons

work the same way as they are in most email website interface.

93

