
An application to provide an interface to a mySQL database located in the cloud

featuring data privacy

by

Andres Avelino Campos Sainz

A Project

submitted in partial fulfillment

of the requirements for the degree of

Master of Science in Computer Science

Boise State University

March 2013

© 2013

Andres Avelino Campos Sainz

ALL RIGHTS RESERVED

BOISE STATE UNIVERSITY GRADUATE COLLEGE

DEFENSE COMMITTEE AND FINAL READING APPROVALS

of the project submitted by

Andres Avelino Campos Sainz

Project Title: An application to provide an interface to a mySQL database located in the

cloud featuring data privacy

Date of Final Oral Examination: 13 March 2013

The following individuals read and discussed the thesis submitted by the student Andres

Avelino Campos Sainz, and they evaluated his presentation and response to questions

during the final oral examination. They found that the student passed the final oral

examination.

Jyh-haw Yeh, Ph.D. Chair, Supervisory Committee

Tim Andersen, Ph.D. Member, Supervisory Committee

Alark Joshi, Ph.D. Member, Supervisory Committee

The final reading approval of the thesis was granted by Jyh-haw Yeh, Ph.D., Chair of the

Supervisory Committee. The thesis was approved for the Graduate College by John R.

Pelton, Ph.D., Dean of the Graduate College.

iv

ABSTRACT

With the increased tendency to allocate massive amounts of data in the cloud, it is

imperative to protect the information from being used for any other purpose than the one

intended by the actual owner(s). Databases located in the cloud are especially prone to

sniffing and/or spoofing attacks given the ordered nature of its data fields, which are

readily available for fast retrieval with short command queries. Using data encryption it is

possible to hide the content or semantic meaning of the information, providing in this

way, data privacy.

Other previous attempts to encrypt all the contents from a mySQL database, leave

the data in a secure state but then such data is no longer useful to perform any updates or

queries using conventional mySQL scripts. Then it becomes necessary to decrypt the

whole database before being able to access the information again resulting in an

inefficient and inconvenient solution.

Motivated primarily by the challenge of this problem, this project consisted on

implementing an application capable of not only encrypting the whole database during

setup and updates, but also, the encrypted data can be accessed seamlessly by a Graphical

User Interface application, interpreting any returning data; this is achieved by means of

carefully encoded queries, using various encryption and decryption methods in such a

way that the user of the application will not even encounter the difference between using

a non-secure database versus the mySQL secure database implemented in this project.

v

TABLE OF CONTENTS

ABSTRACT ... iv

LIST OF TABLES .. vii

LIST OF FIGURES ... viii

LIST OF ABREVIATIONS ... x

CHAPTER 1: INTRODUCTION .. 1

1.1 Organization of Project Report ... 3

CHAPTER 2 RELATED WORK.. 4

2.1 Cloud Database Encryption .. 4

2.2 mySQL Graphic User Interfaces ... 5

CHAPTER 3: PROJECT DESIGN ... 6

3.1 Motivation and functional requirements ... 6

3.2 Code organization ... 8

3.3 Summary ... 27

CHAPTER 4. IMPLEMENTATION .. 28

4.1 Implementation stages .. 28

4.2 A glance at the source code .. 28

4.3 Challenges and important considerations ... 32

4.4 Results ... 34

4.5 Future work ... 43

vi

CHAPTER 5. CONCLUSION ... 44

REFERENCES ... 45

vii

LIST OF TABLES

Table 3.1 Typical example of a CREATE SCHEMA & TABLE mySQL script 14

Table 3.2 Translated CREATE SCHEMA & TABLE mySQL expressions 16

Table 3.3 Typical example for a LOAD DATA mySQL script................................ 18

Table 3.4 Translated LOAD DATA mySQL script .. 19

Table 3.5 Translation of ALTER TABLE mySQL expression 21

Table 3.6 Example of typical query translation .. 23

Table 3.7 Example of typical nested query translation ... 24

viii

LIST OF FIGURES

Figure 3.1. SHDB Overall Design... 8

Figure 3.2. Authentication and Connectivity module ... 9

Figure 3.3. Design of Login GUI .. 10

Figure 3.4. Design of Main GUI ... 11

Figure 3.5. Design of User Dialog for table creation .. 16

Figure 3.6. Internal actions for a create table mySQL expression 17

Figure 3.7. LOAD DATA internal encryption and translation process 20

Figure 3.8. ALTER TABLE internal translation process .. 21

Figure 3.9. Internal SHDB query processing .. 26

Figure 4.1. Login GUI ... 35

Figure 4.1.1 Error message for a failed login session ... 35

Figure 4.2. Welcome and Main GUI ... 36

Figure 4.3. Run Update, create schema and tables .. 37

Figure 4.4. Run Update, Encryption Type definition for tables 38

Figure 4.5. Run Update, load database .. 38

Figure 4.6. Load data completion .. 39

Figure 4.7. Run Query example 1 ... 40

Figure 4.8. Run Query example 2 ... 41

Figure 4.9. Run Query example 3 ... 41

Figure 4.10. Database mode .. 42

ix

Figure 4.11. Effects of the encryption revealed by using normal mode 42

x

LIST OF ABREVIATIONS

GUI Graphical User Interface.

RDS Relational Database management System.

SQL Scripting Query Language.

mySQL Relational database management system (RDBMS) that runs as a

server providing multi-user access to a number of databases.

AWS Amazon Web Services.

AES Advanced Encryption System.

URL Uniform (or universal) resource location.

SHDB Semantic Hiding Database

JDBC Java Database Connector

NC Numeric Comparison only

NCA Numeric Comparison and Arithmetic

SC String Comparison only

SCS String Comparison and Substring matching

JVM Java Virtual Machine

1

CHAPTER 1: INTRODUCTION

 With the increased tendency to allocate massive amounts of data in the cloud, it

has become very important to protect the information from being accessed by any third

party user different than the actual owner(s) of the information. We have to recognize

that by using any cloud database service we are trusting that a very considerable amount

of sensitive information will be handled safely by people that we do not know, and we

also have to consider that the information in the database will be replicated through many

servers in several unknown locations around the world. For this reason, databases located

in the cloud are especially prone to sniffing and/or spoofing attacks given the ordered

nature of its data fields, which are readily available for fast retrieval with mySQL queries.

Using data encryption it is possible to hide the content or semantic meaning of the

information, however, performing encryption into a mySQL database, modifies the data

semantics in such a way that it no longer makes sense to attempt queries with the

conventional mySQL expressions that would be used originally, not only because the

information in the database is encrypted but also because the original characteristics of

the information can be lost if the encryption is not done following previously established

rules and also if the queries are not transformed to use encrypted data as well. This is a

challenging problem; however we designed the necessary algorithms to handle this

complex situation.

2

Now, we not only wanted to come up with a application that accomplishes data

privacy for databases located in the cloud, supporting conventional mySQL update and

query script operations, but it was very important that this application still could be used

easily, hiding all the complexity required to provide the privacy feature. We recognized

that it would not be convenient to come up with a solution that implies running a program

from the command console and required elaborated function calls and parameters to be

typed in the command line, instead, a Graphic User Interface (GUI) needed to be

implemented to minimize any hassle during use, so by implementing the application with

a GUI we wanted to offer an easy and friendly interface capable of laying out several

functions in a single screen, which can be controlled intuitively and that required minimal

skills from the average user, therefore enhancing productivity and providing as much

transparency as possible. At the end the goal is to ensure that a user does not need to be

aware of the encryption and decryption processes occurring at the background during the

mySQL queries, updates or any other auxiliary operation available from the application.

Finally, we also wanted to restrict the use of the application only to users with

permissions previously granted, providing in this way enhanced security, so even before

the application can be started, we wanted to perform authentication via login and

password, also an URL needs to be specified, indicating the cloud service that we want to

use.

 For our application we use different types of encryptions like a Fully

Homomorphic Encryption algorithm (FHE), the popular Advanced Encryption System

(AES), and other customized techniques to perform ordered encryption.

3

1.1 Organization of Project Report

The rest of the Project Report is organized as follows. Chapter 2 describes related

work describing previous attempts to provide data privacy and its pitfalls. Chapter 3

details the motivation and objectives of this Project, it also explains the overall design for

the solution being implemented from a generalized perspective, going down to more

detailed information like the design and layout of objects, the most relevant methods and

its mutual interactions, and finally provides a comprehensive summary of the

functionality. Chapter 4 covers the actual implementation, describing in detail the work

that was completed, the challenges that were faced, important considerations, results and

also describes the future work that can be done to include enhanced features for this

application.

4

CHAPTER 2 RELATED WORK

2.1 Cloud Database Encryption

Previous attempts to provide data privacy in relational databases have existed

before, however they do not leave the database in an active state. The reason is that such

strategies consist on grabbing the whole database content, and perform a single large

encryption operation, where the semantic content is totally lost and renders the database

useless for any kind of query or update scripting operation. Then this kind of operation is

barely good enough to store the database in a secure mode leaving the database disabled

for any kind of operation, this is known as security for data at rest [1]. When a user or

administrator needs to access the actual content, the database is no longer available, so, in

order to enable the database for use, another single large decryption operation needs to be

completed, to return the information to its original state, that is, the database needs to

come back to a non secure mode, in that moment, the database is subject once again to

sniffing attacks from any person gaining access to the information, like for example, a

malicious database administrator or a person in charge of the server maintenance. The

simple fact that the whole database has to be encrypted and decrypted continuously is

inconvenient enough, and still we have the disadvantage that the database is not always

semantically hidden. The attacker can simply wait for the moment that the database

content is exposed by the decryption to initiate an intrusion like a sniffing or spoofing

attack.

5

2.2 mySQL Graphic User Interfaces

Currently mySQL offers a Graphical User Interface (GUI) to interact to relational

databases; however it takes some time to get familiar with the interface since it is not

very intuitive. It is very common to find users that do not know where they need to locate

their .unl files for mySQL to access them and use them when transferring information to

a new database instance. In general, it seems like the most common operations like

editing, import and export, etc., are not quite handy for the user.

Since for this project we needed to implement our own Graphical User Interface, we had

the opportunity to improve around these areas. Our GUI includes an always present list of

files and a very efficient file navigation tool that allows switching to different file

locations with a single mouse click. Also importing and exporting data is always

accessible without having to explore menu items to find these options.

6

CHAPTER 3: PROJECT DESIGN

3.1 Motivation and functional requirements

 The main purpose of this project is to demonstrate that it is possible to perform

encryption to a mySQL database (regardless of its location, size and semantic content)

and we can still being able to manage the database availability for active use with any

kind of queries and updates using the standard mySQL scripting language. In general, by

using the application created in this project, we provide enough transparency to the user

so that intrinsic operations like encryption and decryptions are totally abstracted so that

users can still have a normal interaction like they would do with any other mySQL

application, not containing the privacy feature (semantic hiding).

 The application needed to cover three main pieces of functionality, which actually were

implemented as individual modules which interact each other by simple interfaces,

allowing easy function scalability, maintenance, re-usage of methods and a code

organization that does not require too much effort to be followed by a programmer

familiar with object oriented programming (like Java and C++).

Each of the three major areas of functionality achieves a corresponding goal, as

explained below:

 Connectivity & Authentication: The user is required to provide an URL

representing the address of the mySQL cloud service as well as a user name or login

7

name and a password (hidden from view when typed). This information is collected

by means of a simple GUI.

 Graphical User Interface: Once that access is granted, a larger GUI is built and

presented to the user. Hereafter this is referred as the “Main GUI”. This one consists

of a large window containing several objects like text areas, buttons, menus, text

fields and message dialogs that provide all the necessary functionality so the user can

run a diverse range of operations ranging from queries and updates, to edition, data

sorting, data import and export, etc., all available from the same screen.

 Encryption and Decryption: Totally hidden from the GUI, the user is unaware from

the internal encryption and decryption process occurring at the background during all

kinds of mySQL transactions. This is the more complex piece of implementation in

this project. Basically, once that the user has gained access to the Main GUI, and

starts sending scripts to the mySQL server (either located in the cloud or in a local

machine), the application takes care of translating every single mySQL expression

into an encrypted version. The encrypted expression then, goes to the mySQL server

and is interpreted at the other end (cloud or local server) allowing for the

corresponding data to be updated inside of the database or retrieved to our

application.

 The following figure shows the overall design, covering these three major areas or

implementation:

8

Figure 3.1. SHDB overall design

3.2 Code organization

 The previous section presented a rough overview of the three major areas of

implementation that satisfy the requirements of this project. However, in this section we

take a closer look to the code organization by showing some block diagrams and its

mutual interaction inside of the application. The Figure 3.2 below represents the design

for the authentication and connectivity module.

9

Figure 3.2. Authentication and connectivity module.

When a user initiates the application by double clicking on the SHDB start icon, an initial

screen or user dialog appears, this user dialog will collect from the user three values, the

URL (or address of the server that provides the mySQL database service), a user login

name (for a user previously registered by an administrator) and a password field (also

previously created by an administrator) which hides any typed value from view with

fixed characters. Once that the user clicks on a “OK” button, the connection and

authentication is established with the server. For the case of an invalid URL, login name

and/or password, two more chances are provided to the user, otherwise the application is

closed. Figure 3.3 shows the preliminary design for the login user interface, this is very

similar to the actual screen look and feel achieved after implementation.

10

Figure 3.3. Design of the login user interface, showing prompts for login name,

password and URL.

When users are to be added for access into a certain mySQL provider, the administrator

needs to go to the mySQL cloud management console and define the new user name,

password as well as permissions for the new user. Other providers require that a CID is

defined for a determined range of IP address which can consist of several lists of ranges.

The details of the management console provided by a certain mySQL cloud provider is

out of the scope of this document, but information can be found at the Amazon Web

Services (AWS) [2] and/or the ClearDB websites [3].

The next important block in this design is the Main GUI. This screen is shown only when

a user has been successfully authenticated and it always comes with a welcome message

for the user, confirming the user name and an OK button This screen offers the necessary

interface to the user in order to facilitate queries and updates (according to the

permissions granted by an administrator) as well as other auxiliary functions. Please refer

11

to Figure 3.4 for an image of the preliminary design (which is slightly different from the

actual implementation).

Figure 3.4. Main GUI design.

The main GUI is initially instantiated by the Interface Controller shown in Figure 3.1,

and is highly interconnected to other parts of the code, for every button, menu item, text

area, text field and user dialog, and action event is generated. This event is handled in

such a way that for every one of them a different method from the Interface Controller is

called. The most general case is for the update and query processes, which can be

described as calling a method that processes the user input from the input text area,

followed for some processing and collection of results which then are displayed in the

12

results window, however not all operations need to access the Interface Controller, that is

the case of the User Dialogs which are used extensively to provide an adequate user

experience (error messaging, setup of a new database, data exporting, file management,

path navigation, help, etc).

 Since the main focus of this project is for special handling of mySQL queries and

updates we explain such areas in more detail. Other miscellaneous features are covered

with less detail.

A clear distinction can be made between update and query mySQL operations, especially

from the perspective of a Java DataBase Connection (JDBC) implementation. Examples

of update operations are the following:

 Drop schema if exists

 Create schema

 Load database

At the other hand, examples of query operations are:

 Show databases

 Show tables

 Select <item(s)> from <table(s)> where <condition(s)>

The distinction is necessary because an update and a query need to be handled very

differently in the code. Both need encryption and decryption operations in the

background, also both require of a preliminary parsing process (interpretation of

commands, parameters, equalities and nesting in the expressions) but the JDBC library

13

treats them in different ways, so in summary different functions from this library are

required for an update and for a query.

3.2.1 Update operations

When the user presses the Run Update button, a String Tokenizer is started. Every single

word in the mySQL expression typed by the user is examined and a decision is taken on

what actions to perform based on the contents of the expression. Next, we cover the most

typical update operations required to setup a database.

CREATE SCHEMA and CREATE TABLE. This is typically the first kind of mySQL script

that a user or administrator needs to execute when setting up a new database instance.

However, it is not composed of a single expression, but many of them. An example is

provided below:

drop schema if exists `company`;

create schema `company`;

use `company`;

CREATE TABLE department (

 dname CHAR(15) NOT NULL,

 dnumber INT NOT NULL,

 mgrssn CHAR(9) NOT NULL,

 mgrstartdate DATE,

 PRIMARY KEY (dnumber),

 UNIQUE (dname)

);

CREATE TABLE employee (

 fname CHAR(15) NOT NULL,

 minit CHAR,

 lname CHAR(15) NOT NULL,

 ssn CHAR(9) NOT NULL,

 bdate DATE,

 address CHAR(30),

 sex CHAR,

 salary DECIMAL(10,2),

 superssn CHAR(9),

 dno INT NOT NULL,

 PRIMARY KEY (ssn)

14

);

CREATE TABLE dept_locations (

 dnumber INT NOT NULL,

 dlocation CHAR(15) NOT NULL,

 PRIMARY KEY (dnumber, dlocation)

);

CREATE TABLE project (

 pname CHAR(15) NOT NULL,

 pnumber INT NOT NULL,

 plocation CHAR(15),

 dnum INT NOT NULL,

 PRIMARY KEY (pnumber),

 UNIQUE (pname)

);

CREATE TABLE works_on (

 essn CHAR(9) NOT NULL,

 pno INT NOT NULL,

 hours DECIMAL(3,1) NOT NULL,

 PRIMARY KEY (essn, pno)

);

CREATE TABLE dependent (

 essn CHAR(9) NOT NULL,

 dependent_name CHAR(15) NOT NULL,

 sex CHAR,

 bdate DATE,

 relationship CHAR(8),

 PRIMARY KEY (essn, dependent_name)

);

Table 3.1. Example of typical mySQL expressions used to create a new database

instance, in this case for a database named „company‟.

In a case like this, the application processes the different expressions one by one from top

to bottom. For this example all the expressions are translated into new expressions that

look like the new expressions shown in Table 2 below:

drop schema if exists `LUSInWQxFWbj79xu5VL2tg==`;

create schema `LUSInWQxFWbj79xu5VL2tg==`;

15

use `LUSInWQxFWbj79xu5VL2tg==`;

CREATE TABLE `latCaFEi7UA57y7KfeHc2Q==` (

`CvblhUbRIbMn4yJhMinGjA==` CHAR(128) NOT NULL ,

`hy0yWjVQ2SaGswqsnWy7Lw==` BIGINT NOT NULL ,

`U81Z8kLh7DHXLej1+uHQlw==` CHAR(128) NOT NULL ,

`k0LJOl83MB2LobovYJLuwQ==` BIGINT ,

 PRIMARY KEY (`hy0yWjVQ2SaGswqsnWy7Lw==`),

 UNIQUE (`CvblhUbRIbMn4yJhMinGjA==`))ENGINE=InnoDB;

CREATE TABLE `1m4t1hSG+qIBhoxiwpawJw==` (

`e5Va3+bSOoxaWvrSNet3Dw==` CHAR(128) NOT NULL ,

`WkPiUzA5hT5pqJY668lyWg==` CHAR(128) ,

`qobZJ/A0EeEHwlxbld+kaQ==` CHAR(128) NOT NULL ,

`ZOTDsz7gk1P5Yhz+ksVPcA==` CHAR(128) NOT NULL ,

`CJwFz4IgnoxFlniA7edCMg==` BIGINT ,

`Vl8Kf5zCdSHVFIqHfFBz8g==` CHAR(128) ,

`QFiUc+dUiTYetY6zgmJnCA==` CHAR(128) ,

`TO/L7fedob0d+gkoE1/19g==` DEC(65,2) ,

`DtDIe5O09tikVOezObCfEQ==` CHAR(128) ,

`j/80kIzc3J5QWjv35ISKbA==` BIGINT NOT NULL ,

 PRIMARY KEY (`ZOTDsz7gk1P5Yhz+ksVPcA==`))ENGINE=InnoDB;

CREATE TABLE `/6+zaceU2bmo1qU26UiJ9w==` (

`hy0yWjVQ2SaGswqsnWy7Lw==` BIGINT NOT NULL ,

`6qJjwpqSesSb45a7uHzwkw==` CHAR(128) NOT NULL ,

PRIMARY KEY (`hy0yWjVQ2SaGswqsnWy7Lw==`,

`6qJjwpqSesSb45a7uHzwkw==`))ENGINE=InnoDB;

CREATE TABLE `27f0ba7J9+Pt7+XslTGVzg==` (

`t0kB3YPAjOF/868/W7q32w==` CHAR(128) NOT NULL ,

`V8GeHzVDL2B47CtJo0SxdQ==` BIGINT NOT NULL ,

`T6yZXSg3o4dzc9Ar33e8Ag==` CHAR(128) ,

`ei6KZldLywvE6ycmSk2BfQ==` BIGINT NOT NULL ,

 PRIMARY KEY (`V8GeHzVDL2B47CtJo0SxdQ==`),

 UNIQUE (`t0kB3YPAjOF/868/W7q32w==`))ENGINE=InnoDB;

CREATE TABLE `W57f8/oxQe1HWv+9TQHSqg==` (

`GC/AFI9hZ7X4LIa8Txme6w==` CHAR(128) NOT NULL ,

`fJmYoZM3efDAxBYoHs17pw==` BIGINT NOT NULL ,

`NrpuCnNWET310Z9nPhbnOg==` DEC(65,1) NOT NULL ,

 PRIMARY KEY (`GC/AFI9hZ7X4LIa8Txme6w==`,

`fJmYoZM3efDAxBYoHs17pw==`))ENGINE=InnoDB;

CREATE TABLE `fzXHLwb+i/thXZ73BaqFCQ==` (

`GC/AFI9hZ7X4LIa8Txme6w==` CHAR(128) NOT NULL ,

`4j4udebuLV7/SWNdW6aMDw==` CHAR(128) NOT NULL ,

`QFiUc+dUiTYetY6zgmJnCA==` CHAR(128) ,

`CJwFz4IgnoxFlniA7edCMg==` BIGINT ,

`P4PRqFnHct5kuMneZ8u93g==` CHAR(128) ,

 PRIMARY KEY (`GC/AFI9hZ7X4LIa8Txme6w==`,

`4j4udebuLV7/SWNdW6aMDw==`))ENGINE=InnoDB;

16

Table 3.2. Translated expressions, as they are prepared to be sent to the encrypted

mySQL database, for the creation of a new database instance.

Note that for every single expression that contains the mySQL create table command, the

application builds and shows a brief user dialog, which displays a list of column names,

each column name has a corresponding drop down menu where different encryption

types are specified as selectable options. The options listed for encryption types are

Numeric with Comparison (NC), Numeric with Comparison and Arithmetic (NCA),

String Comparison only (SC), String Comparison and Substring matching (SCS) and

DATE (one of this values is already selected automatically by the application, which is

chosen based on the actual mySQL data type). The user then has the option to use the

default provided or to specify the encryption type that, based on his/her best judgment,

will provide the most reliable query performance. The next figure shows an example for

one of these user dialogs.

Figure 3.5 Typical user dialog for table creation, in this case, for the department table. At

this point the user is given the opportunity to change the encryption types to be used

during the creation of the table. However the program is already suggesting what seems

to be the best options.

17

Once that the user is done with selecting the encryption types, and it clicks on the

“Apply” button, the application then creates a .cfg file, which will be used for further

encryption and decryption processes. This file will store the encrypted table names and its

corresponding encryption types, this type of files are actively used by other mySQL

transactions like query translation and result decryption. The following figure shows the

actions behind the create table command from a programming perspective.

Figure 3.6 Internal actions for a create table mySQL expression

LOAD DATA. Load data is also categorized as another important update operation. The

next table shows a typical example for the database company, with these commands or

18

expressions, the deployment of the new database recently created will be complete, since

all the necessary data will be encrypted and then sent to the mySQL server.

use `company`;

LOAD DATA LOCAL INFILE 'employee.unl'

INTO TABLE employee

FIELDS TERMINATED BY '|' ;

LOAD DATA LOCAL INFILE 'department.unl'

INTO TABLE department

FIELDS TERMINATED BY ' ';

LOAD DATA LOCAL INFILE 'dept_locations.unl'

INTO TABLE dept_locations

FIELDS TERMINATED BY ' ';

LOAD DATA LOCAL INFILE 'project.unl'

INTO TABLE project

FIELDS TERMINATED BY ' ';

LOAD DATA LOCAL INFILE 'dependent.unl'

INTO TABLE dependent

FIELDS TERMINATED BY ' ';

LOAD DATA LOCAL INFILE 'works_on.unl'

INTO TABLE works_on

 FIELDS TERMINATED BY ' ';

Table 3.3 Typical example for a LOAD DATA mySQL script.

Similarly to the script with create schema and create table commands, all the expressions

are translated so that the table names are encrypted in the new expressions. Also, the .unl

file names are used to create new internal .unl files. These new .unl files are created by

reading the original .unl files provided by the user (or administrator) and then for every

single data field, an encryption is applied, and this is based on the contents of the .cfg file

previously created. In this way, by the time that the translated expression is sent to the

19

mySQL server, the data being transferred is readily available for its trip to the database.

The next table shows the resultant load data mySQL script, after translation:

use `LUSInWQxFWbj79xu5VL2tg==`;

LOAD DATA LOCAL INFILE 'c:\\Program Files\\SHDB_GUI\\employee-sh.unl'

INTO TABLE `1m4t1hSG+qIBhoxiwpawJw==`

FIELDS TERMINATED BY '|' ;

LOAD DATA LOCAL INFILE 'c:\\Program Files\\SHDB_GUI\\department-sh.unl'

INTO TABLE `latCaFEi7UA57y7KfeHc2Q==`

FIELDS TERMINATED BY ' ';

LOAD DATA LOCAL INFILE 'c:\\Program Files\\SHDB_GUI\\dept_locations-sh.unl'

INTO TABLE `/6+zaceU2bmo1qU26UiJ9w==`

FIELDS TERMINATED BY ' ';

LOAD DATA LOCAL INFILE 'c:\\Program Files\\SHDB_GUI\\project-sh.unl'

INTO TABLE `27f0ba7J9+Pt7+XslTGVzg==`

FIELDS TERMINATED BY ' ';

LOAD DATA LOCAL INFILE 'c:\\Program Files\\SHDB_GUI\\dependent-sh.unl'

INTO TABLE `fzXHLwb+i/thXZ73BaqFCQ==`

FIELDS TERMINATED BY ' ';

LOAD DATA LOCAL INFILE 'c:\\Program Files\\SHDB_GUI\\works_on-sh.unl'

INTO TABLE `W57f8/oxQe1HWv+9TQHSqg==`

FIELDS TERMINATED BY ' ';

Table 3.4 Translated LOAD DATA mySQL script.

 So, in summary, for a load data local infile expression, the file names are collected for

future handling in a separated process, but first the update expression is translated

20

(basically the table names are encrypted), and the file names are substituted by a different

internal file name (.unl file). Also the specified delimiters are reused for the new internal

.unl file encryptions. Here is where the .cfg files are used to determine what encryption

type to use for each column. Once that the translation is completed, the new expression is

sent to the mySQL server, so the rest of the processing is completed by mySQL. The next

figure shows the complete LOAD DATA process from a programming perspective.

Figure 3.7 LOAD DATA internal encryption and translation process.

There are many other update operations but their handling can be much simpler. For

those cases, generally the translation of the mySQL expression is good enough. See next

example.

21

ALTER TABLE. This kind of mySQL update is very straight forward, so no internal

processing is required in addition to the translation (encryption of the expression). The

next table shows how this works.

Original:

ALTER TABLE dept_locations ADD FOREIGN KEY (mgrssn) REFERENCES

employee(ssn);

Translated expression:

ALTER TABLE `/6+zaceU2bmo1qU26UiJ9w==` ADD FOREIGN KEY

(`U81Z8kLh7DHXLej1+uHQlw==`) REFERENCES

`1m4t1hSG+qIBhoxiwpawJw==`(`ZOTDsz7gk1P5Yhz+ksVPcA==`);

Table 3.5. Translation of ALTER TABLE update operation. This is a very straight

forward case.

The internal processing for ALTER TABLE is shown in the next figure.

Figure 3.8 ALTER TABLE internal translation process.

22

3.2.2 Query operations

As mentioned before, the JDBC handles mySQL query operations in a different way. But

it is not only JDBC which requires the distinction. A query operation is also very

different in the sense that we are not adding or modifying any data to the database, in this

case, we are retrieving information from the database in a very selective way. For a

typical query operation, we needed to consider that the original query typed by the user

also needs translation, because the database names, table names, values and other

parameters cannot be compared with the encrypted information in the database, so we

needed to perform a very careful translation that considers the initial configuration of the

database (that is, the .cfg files). Also, the translation cannot be made directly, first, it is

necessary to have our SHDB application to perform a preliminary interpretation of the

query, so that the application can learn which .cfg files will need to be accessed and what

decryption types are necessary for the equalities in the expression. Yet another

consideration is that the equalities can be typed by the user altogether or also can be

typed to the left or to the right of a determined value, so we need to provide the flexibility

of not restricting to the user how the syntax of equalities is specified and same thing for

the use of parenthesis in aggregate functions. Last but not least, the SHDB program needs

to be capable of handling nested mySQL query expressions.

 But so far we have covered only an overview of query translation. That is not all the

work that we needed. When a query translation is complete, and then is sent to the

mySQL server, we need to wait for the response from the server, then we need to collect

the returning data into an internal, temporal file. Then the next step is accessing the

internal .cfg files of our SHDB application to learn what decryption methods we need to

23

use for every corresponding column in the returning data. Finally we decrypt the data

stored in the SHDB internal results file (which contains encrypted data only) and present

the decrypted information to the results window of our Main GUI. That completes a

typical mySQL query transaction.

The next table shows a simple example for a query translation. As mentioned above,

before the translated query is sent to the mySQL server, we need to perform a syntax

correction process, a parsing process, an encryption process based in the internal .cfg files

and finally we send the encrypted or translated expression to the server.

Original query expression typed by the user:

select distinct fname, lname

from employee, works_on, project

where dno=dnum and pnumber=pno and essn=ssn;

Translated query expression, after syntax correction, parsing and encryption internal

processing:

select distinct `e5Va3+bSOoxaWvrSNet3Dw==`,`qobZJ/A0EeEHwlxbld+kaQ==` from

`1m4t1hSG+qIBhoxiwpawJw==`, `W57f8/oxQe1HWv+9TQHSqg==`,

`27f0ba7J9+Pt7+XslTGVzg==` where `j/80kIzc3J5QWjv35ISKbA==` =

`ei6KZldLywvE6ycmSk2BfQ==` and `V8GeHzVDL2B47CtJo0SxdQ==` =

`fJmYoZM3efDAxBYoHs17pw==` and `GC/AFI9hZ7X4LIa8Txme6w==` =

`ZOTDsz7gk1P5Yhz+ksVPcA==` ;

Table 3.6 Example of Typical query translation.

The case for translations when nested query expressions are found is a bit more complex.

For nested queries, the SHDB application identifies where a nested query starts and ends,

then it is saved into an array of nests for later use. The nested expression is substituted

with a flag that contains the index representing the position in the nest array. Also, a

second array of nests is created with the purpose of saving translated nested expressions;

24

of course, the same index is used to make things consistent. In that way, when the main

expression is completely examined, a reassembly is made by substituting the nest flags by

the translated nests, forming in this way the final expression that we can send to the

mySQL cloud or local server in use. The next table shows an example of nested query

translation.

Nested expression provided by the user:

select dname from department

where (select sum(salary)

 from employee

 where dnumber=dno) >= 10000;

Nested expression after syntax correction, parsing, nest handling and translation.

select `CvblhUbRIbMn4yJhMinGjA==`

from `latCaFEi7UA57y7KfeHc2Q==`

where (select sum(`TO/L7fedob0d+gkoE1/19g==`)

 from `1m4t1hSG+qIBhoxiwpawJw==`

 where `hy0yWjVQ2SaGswqsnWy7Lw==`

 = `j/80kIzc3J5QWjv35ISKbA==`) >= 430000.0;

Table 3.7 Example of typical nested query translation.

The use of nest arrays allows for the proper handling of multiple nests in a query

expression. See next example as well:

Expression provided by the user, with two nests:

select fname, lname, dname

from employee, department

where ssn=mgrssn and dnumber in (select dnum from project)

and mgrssn in (select mgrssn from department);

Nested expression after syntax correction, parsing, nest handling and translation.

25

select `e5Va3+bSOoxaWvrSNet3Dw==`, `qobZJ/A0EeEHwlxbld+kaQ==`,

`CvblhUbRIbMn4yJhMinGjA==` from `1m4t1hSG+qIBhoxiwpawJw==`,

`latCaFEi7UA57y7KfeHc2Q==` where `ZOTDsz7gk1P5Yhz+ksVPcA==` =

`U81Z8kLh7DHXLej1+uHQlw==` and `hy0yWjVQ2SaGswqsnWy7Lw==` in (select

`ei6KZldLywvE6ycmSk2BfQ==` from `27f0ba7J9+Pt7+X

slTGVzg==`) and `U81Z8kLh7DHXLej1+uHQlw==` in (select

`U81Z8kLh7DHXLej1+uHQlw==` from `latCaFEi7UA57y7KfeHc2Q==`)

Table 3.8 Example of query translation with multiple nests.

In summary, once that a translated query is sent to the mySQL cloud or local server, we

wait for the process to be completed, that is, for the returning data to arrive to our SHDB

application. Then we direct this information (which is completely encrypted) to an

internal results file. From there, we use the encrypted column headers (also retrieved

along with the results) as a reference to perform a look up into our .cfg files, which

provide us with the decryption types to be used for our results. After performing the

corresponding decryption we now present the results to the results window of the Main

GUI.

The following figure show the complete processing for queries run in our SHDB

application:

26

Figure 3.9 Internal SHDB query processing.

The same process shown in Figure 3.9 is applied for other type of queries like show

tables, show databases, etc., except that when sent for translation, it is determined that

there is no information to translate.

The extra processing required to handle encrypted data can be skipped by selecting a non

secure mode, this was made to perform comparison of results as well as for

demonstration purposes. Chapter 4 includes actual images of the implemented application

including the option to communicate with the mySQL server in either secure or non

secure mode.

27

3.3 Summary

An input from the user in the form of a mySQL script can consist of one or more mySQL

expressions. The application is made so that every individual expression is handled

individually and sequentially.

There are two major kinds of mySQL expressions: Updates and Queries. Updates and

Queries are handled in a very different manner, not only because the JDBC library

requires it, but also because for an update we send information to our mySQL server

while for a query, we retrieve information so, in a way, they are inverse processes.

By storing encrypted data in the mySQL query, we are required to send both update and

query expressions translated accordingly, that is, our expressions have to contain

encrypted database names, table names, parameters and values. Of course, we do not

encrypt commands, function names, special characters or equality symbols.

Some of the updates and queries require significant internal processing, but those

operations are hidden from the user, providing transparency and ease of use.

For convenience, our SHDB application provides a two operation modes, secure and non

secure. This is covered in more detail in the following chapter.

28

CHAPTER 4. IMPLEMENTATION

4.1 Implementation stages

In general, the implementation process can be summarized in the following major stages:

 Setting up a mySQL local server

 Start running queries and updates (in normal, non-secure mode)

 Implementation of a Login GUI with prompts for URL, login name and password

 Integration of Login GUI with code in charge of connection and authentication to

the server

 Creating of a Main GUI with handles for major operations like queries, updates,

text edition, data import and export and other processing.

 Setting up a mySQL cloud server in AWS and ClearDB service providers

 Implementation of Secure Mode to support encryption and decryption of data for

my SQL update operations

 Implementation of Secure Mode to support encryption and decryption of data for

my SQL query operations

 Addition of auxiliary functions to support miscellaneous features

 Testing and optimization of code

 Deployment

29

4.2 A glance at the source code

This section lists the java source files and its corresponding description, giving a

general understanding of its role in the SHDB application:

AES_Encrypter.java : In charge of encryption of plaintext and decryption of cyphertext

using the AES cryptographic system. The methods provided are encrypt(),

encryptWordbyWord(), decrypt(), decryptWordbyWord() and generateKey().

DeleteDialog.java : User dialog that requests confirmation from a user before deleting a

file selected for removal.

EncTypeDialog.java : This class has a lot of functionality. It is triggered by the mySQL

create table expressions, and it uses an instance of the InterfaceController,

HomomorphicEncrypter and the AES_Encrypter classes. It builds and shows a user

dialog for each of the new tables during its creation process, then prompts the user for

confirmation or modification of the suggested encryption types. After the user

confirmation of the selected options, it runs the JDBC update process, sending the

translated expressions to the mySQL server. Its more relevant methods are defaultEncr(),

conVarType(), actionPerformed() and main().

ExtDialog.java : User Dialog that prompts the user for the type of file extensions to be

shown on the left text are, which is also called the “File List Window”.

HomomorphicEncrypter.java : In charge of encryption of plaintext and decryption of

cyphertext using the HFE cryptographic system. The methods provided are

GenerateRandomInteger(), nextRandomBigInteger(), GenerateBigRandPrime(),

fillbytes(), generateKeys(), Dec2Hex(), Hex2Dec(), loadKeysFromFile(), encryptString(),

30

encryptStringFixedEQ(), encryptNumber(), encryptNumberFixedEQ(), decryptString()

and decryptNumber().

InterfaceController.java : This is one of the most important classes in the SHDB

application. It is the first object called when the SHDB icon is started. There are several

methods and they are: setURL(), setUSER(), setPSWD(), stopConnection(), runUpdate(),

runQuery() handleUSE(), parseQuery(), readPath(), getBinPath(), getFileSize(),

convPath(), readSelectedFile(), spaceHandler(), runJLT1(), runJLT2(), runJLT3(),

runJLT4(),runJLT5(), filterSelectedFile(), hideFromSelectedFile(), getConfigFile(),

getFileSizeInt(), savePath(), createTXTFile(), getExecPath(), readFavorites(),

writeFileList(), saveFav(), saveConfig(), deleteSelectedFile(), setPath() and main().

Login_GUI.java : A user dialog in charge of collecting URL, login name and password

from the user. It uses an instance of the InterfaceController class. Its most important

methods are windowClosing(), componentShown(), actionPerformed(),

propertyChange(), clearAndHide(), main() and run(). It uses an instance of the

InterfaceController().

Main_GUI.java : The most important Graphical User Interface in this application. It is

the central interface for the user and it makes all the functionality available by showing a

big variety of buttons, menus, text areas, text fields and interchangeable panes. Its

methods are createFDImage(), setStatus(), setResults1(), setResults2(), setResults3(),

caretPosHighLight(), findPanelSetup(), resultsPanelSetup(), displayPanelSetup(),

queryDisplayPanelSetup(), analysisPanelSetup(), editPanelSetup(), queryPanelSetup(),

updatePanelSetup(), filterPanelSetup(), cardContainerSetup(), cardContainer2Setup(),

createFileMenu(), createEditMenu(), createFindMenu(), createFilterMenu(),

31

createAnalyzeMenu(), createModeMenu(), createFavoritesMenu(), updateFavorites(),

createHelpMenu(), checkFile(String bookfile), updateWindows(), updateWindow1(),

updateWindow2(), updateWindow3(), add2LinkedList(), status_Processing(),

status_Ready(), please_select_a_file(), actionPerformed(), getAction(),

mouseClicked(), mouseEntered(), mouseExited(), mousePressed(), mouseReleased(),

lostOwnership() and main ().

Pader.java : In charge of ASCII Pading plaintexts that need to be treated by numbers for

Homomorphic Encryption. Its methods are ASCIIDepad(), ASCIIDepad_string(),

ASCII_Depad_array(), ASCIIPad(), CheckPadding(), convert_str2ascii() and main().

ResNDialog.java : A User Dialog used for several scenarios, like prompting for a file

name when exporting results, saving a filter configuration file name, for prompting for a

string that needs to be found in the editor mode.

SemanticHider.java : This class has the most difficult tasks during the execution of the

SHDB application. It is in charge of performing translation of query or update mySQL

expressions, it has an interpreter (parser) for queries and determines the types of

encryptions based on the internal .cfg files, it is also in charge of encrypting .unl files,

and it handles several calls to the encryption and decryption classes. Its methods are:

decryptQueryResults(), isQueryCommand(), isAggregate(), removeLastChar(),

isAnIntegerNumber(), getEncType(), accept(), parseEqualities(), semHideQuery(),

semHideUpdate(input), accept(), isColumn_VarType(), isKeyDef(), isValidExpr(),

isCondition(), encryptValue(), encryptUNL(), convPath(), convVarType(),

conv2DateSH(), convert2DateSH(), conv2Date(), convert2Date(), getNests(),

openNests(), isNested(), tokenizator() and main().

32

SplitDialog.java : User Dialog to prompt users for the desired number of splits in the

selected file.

4.3 Challenges and important considerations

The implementation of the SHDB application has been a lengthy learning process with

many interesting challenges during the different stages of implementation. This section

explains the most relevant challenges faced as well as important considerations that could

not be ignored during the design and the writing of code.

Table names and database names are not case sensitive. However encrypting a

plaintext in mixed case returns a different cipher that encrypting a plaintext in uppercase

and also returns different values for lowercase. This is an important consideration to take

into account, since the encryption process needs to be consistent for all database names

and table names provided by the user. This applies only for windows mySQL. The SHDB

application converts table names and database names to lowercase when necessary.

Tokenization of mySQL expressions can be difficult when the user does not use

spaces, equalities and terminators in a consistent way. Therefore it was required to

perform extra processing to fix the syntax of every mySQL expression entered by the

user. Basically equalities are separated from variable names and values with spaces,

parenthesis need to be recognized for aggregate functions and differentiated from nested

expressions. Table names can have or not have quotation marks. Line feeds and carriage

return ASCII symbols can be in the middle of the expression making translation more

difficult. This is why the SHDB application always performs a syntax correction before

completing any further processing.

33

Encrypting text requires padding for the Homomorphic Encryption (HFE)

technique. The HFE technique uses a quadratic equation during its encryption process,

that means that a plaintext needs to consist of a number; otherwise, we can get a

NumberFormatException error from the Java Virtual Machine (JVM). In order to address

this situation, a complex padding function was implemented and it is used whenever a

text needs to be encrypted using HFE.

JDBC offers limited error handling. The Java Database Connector (JDBC) library

returns very limited information around errors found by mySQL. This reduces the

amount of resolution that can be used when reporting errors in the Main GUI. For this

reason, most of the messages related to queries and updates errors refer to syntax errors

even though the cause of the problem can be an invalid database name, table name, etc.

Not all mySQL cloud providers support the open source mySQL JDBC driver. This

means that the SHDB application might not work for some cloud providers, that is the

case of Google mySQL Cloud services, which does not support the open source JDBC

driver, they only support their own proprietary driver which means, having to change

some lines of code in the SHDB application. However AWS, ClearDB and any other

cloud provider using the open source mySQL JDBC driver are compatible with SHDB.

Most of the mySQL cloud providers require a credit card number when creating a

user account. This makes it inconvenient when the purpose is to try many cloud

providers. Care must be taken of not falling into the end of the trial period and also when

the trial period ends, charges to the credit card are automatic.

A great variety of mySQL commands exist, giving way to too many possibilities in

terms of mySQL expressions and its combinations, which eventually need to be

34

supported. The SHDB application supports the most common types of commands and its

combinations with aggregate functions, nested queries, equality types, etc. However some

cases might be still unsupported. Further work is necessary and it is important to mention

that upon any code changes, the best practice will be, to test as thoroughly as possible to

ensure that the robustness and reliability of the application is preserved.

Tools used for development:

Version control: Tortoise SVN.

For C++ code development: Bloodshed.

For Java code development: Eclipse.

mySQL cloud providers: Amazon Web Services and ClearDB.

4.4 Results

This section presents some actual results from the implemented application. We run a few

examples in the actual application showing the final look and feel of the Graphical User

Interfaces and User Dialogs including real results from transactions made to the databases

located with the mySQL server (from cloud provider).

Login GUI. The first interaction with the user after starting the program is the Login GUI.

This one collects the URL of the mySQL service provider, the user name or login name

and the password, which is hidden from view by using special characters as the password

value is typed.

35

Figure 4.1 Login GUI

In the case that the user types invalid information, which cannot be validated by the

mySQL server, the following error message is posted:

Figure 4.1.1 Error message for a failed Login GUI session.

The user can have up to three opportunities to provide the correct information, otherwise

the application is closed.

36

Welcome message and Main GUI. If after entering the URL, login name and password,

the user is properly authenticated and connected to the mySQL server, the SHDB

application will post a welcome message as well as the Main GUI.

Figure 4.2 Welcome and Main GUI

After closing the Message window, the user can now start working with the SHDB

application. The accessibility to different databases as well as permissions to update or

delete information must be determined by the administrator who setups the access rights

for the different users.

37

The next figure shows one of the most typical examples when setting up a new database

instance. In this case, the user clicks on the second file from the list which makes the

SHDB application to show the contents of the file, in this case, a mySQL script to create

a database named „company‟ and create the corresponding table names.

Figure 4.3 Run Update, create schema and tables.

Before the transaction can be completed, the user will get a user dialog for every one of

the tables referred in the script. The purpose of these user dialogs are to suggest to the

user the encryption types that can be utilized during the Semantic Hiding of the

information and also, the user is given the opportunity to change the corresponding

selections. Please refer to the next figure.

38

Figure 4.4 Run Update, Encryption Type definitions for tables.

When the user clicks on the „Apply‟ button, the corresponding create table mySQL

expression is translated and sent to the mySQL server for its creation.

The next step for this demonstration is to load the database with the information from the

tables. See next figure:

39

Figure 4.5 Run Update, load database.

When the user clicks on the „Run Update‟ button, a lot of things happen. Basically the

load data expressions are translated, internal and temporal .unl files are created with the

encrypted information based on the original .unl files and the information is then sent to

the mySQL server.

Figure 4.6 Load data completion.

The feedback for the user after clicking on the Run Update button is minimal, in this

example, it is “8 rows affected”, which is exactly the same message that the user would

get by using a mySQL interface that does not handle encryption. This is a good example

of the transparency provided to the user by using the SHDB application.

Now let‟s see some examples of query operations. For the next cases, let‟s consider that

the user has already pressed the „QUERY‟ orange button to bring the query pane with the

corresponding buttons in the orange bar.

40

Figure 4.7 Run Query example 1.

When the user clicks on the „Run Query‟ button, the results are instantly shown on the

third text area on the right, that is called the „Results window‟.

Similarly to the previous example, a lot goes on for an operation like this. As soon as the

„Run Query‟ button is pressed, the syntax of the expression is reviewed and corrected

(whenever that it is possible), the query expression is parsed, the internal .cfg files are

accessed to find the necessary encryption types to be used and then the translated mySQL

expression is sent to the mySQL server that is currently connected to the application.

When the mySQL server responds with data results, they are written to an internal

temporal file, along with the corresponding headers for each column. These information

is then decrypted, again by accessing the .cfg files which are chosen at the time that the

query expression was parsed. Once that the results are decrypted, they are sent to the

“Results window” so the user can look at them (and/or copy to the clipboard).

41

Let‟s see a couple more examples:

Figure 4.8 Run Query example 2.

Figure 4.9 Run Query example 3.

As mentioned before, the user will get the same look and feel as if the application was not

using encryption at all.

42

As a bonus feature, for demonstration purposes and also for development, the SHDB

application includes a „DB Mode‟, which can be secure (default) or non secure (selected

by removing the check mark from the „DB Mode‟ menu item, „Secure‟.

Figure 4.10 Database mode.

The next Figure shows how the non secure mode can be used to have direct access to the

encrypted information, this feature is useful for demonstration and development purposes

and can be easily removed by commenting a single line of code in the SHDB application

development tool.

43

Figure 4.11 Effects of the encryption revealed by using normal mode.

4.5 Future work

As in any other implementation, there is always room for improvement. The following

features could be added to enhance the user experience of this application:

 Addition of administration capabilities to the Main GUI (like user creation,

deletion and permission control).

 More work is required to provide support to those mySQL commands not

included yet in the SHDB application.

 Capability to export data from “Results Window” to excel tables or command

separated value (.csv) files.

 Creation of log files with usage of the SHDB application.

 Capability to create automatic version updates of the SHDB application.

 Options to change the look and feel of the GUI windows as well as options to

change the layout of the text areas.

 Resizable text areas.

44

CHAPTER 5. CONCLUSION

 The goal of implementing a comprehensive GUI application that could serve as a

demonstration tool for the cloud database data privacy concept has been accomplished in

this implementation. We did not want to come up with a solution that required a user to

run a low level application in a command console and instead we decided to go ahead and

implement the whole concept with a convenient Graphical User Interface. This resulted

in an application that is easy to use for those users familiar with mySQL.

The implementation was carefully planned and divided in three major areas:

authentication and connectivity, Graphical User Interface and Encryption and Decryption

(for use in the data privacy feature). The data privacy feature was not easy to implement,

and it was perhaps the most challenging part of this project. However, all of the

complexity has been conveniently hidden from the user.

After months of hard work, a few thousand lines of C++ and Java code and very

intensive testing, we think that what was born as an idea is now an actual implementation

with a friendly look and feel but most importantly, robustness and ease of use.

In the future, we would like to add more convenient features to the application,

always performing a very thorough testing in order to ensure that this continues to be a

robust and flexible solution, applicable to the needs of the cloud database users of today.

45

REFERENCES

[1] http://www.winmagic.com/solutions

[2] http://aws.amazon.com/console/

[3] https://www.cleardb.com/developers

Author, Imaginary. 2011. This Is an Example Source. Boise: Boise State University

Publishing.

Doe, John. 1903. Imaginary Text. London: Red Herring Press.

<Add book names here>

http://www.winmagic.com/solutions
http://aws.amazon.com/console/
https://www.cleardb.com/developers

