One-way group key agreement protocol for end-to-end web email encryption

Jyh-haw Yeh
Dept. of Computer Science
Boise State University
Boise, Idaho 83725, USA

1 One-way group key agreement protocol for email encryption

Assume ID_0 is the email sender’s identity (for example email address) and let ID_i, for $i = 1, 2, \ldots, n$, denote the identity for each email recipient in a group with n people.

Key generation by email sender

1. The email sender picks a random number r and computes

$$x_i = e(S_0, rH(ID_i)) \in G_2, \forall i = 0, 1, 2, \ldots, n$$ \hspace{1cm} (1)

2. The email sender generates the encryption key K by

$$K = \bigoplus_{i=0,1,\ldots,n}(x_i)$$ \hspace{1cm} (2)

3. The email sender also computes $y_i, \forall i = 1, 2, \ldots, n$, as follows.

$$y_i = \bigoplus_{j \neq i}(x_j)$$ \hspace{1cm} (3)

4. The email sender encrypts the email using the secret key K and then sends the encrypted email out along with $(r, y_1, y_2, \ldots, y_n)$.

Key re-generation by each email recipient

Upon receiving the email from ID_0, each recipient ID_i can compute the secret key K by the following equation.

$$K = y_i \oplus e(rH(ID_0), S_i)$$ \hspace{1cm} (4)

since

$$y_i \oplus e(rH(ID_0), S_i) = y_i \oplus e(rH(ID_0), sH(ID_i)) = y_i \oplus e(sH(ID_0), rH(ID_i)) = y_i \oplus e(S_0, rH(ID_i)) = y_i \oplus x_i = (\bigoplus_{j \neq i}(x_j)) \oplus x_i = K$$
Example

Assume a person ID_0 would like to send an email to two other persons ID_1 and ID_2.

1. ID_0 picks a random number r and computes

 \[
 \begin{align*}
 x_0 &= e(S_0, rH(ID_0)) \\
 x_1 &= e(S_0, rH(ID_1)) \\
 x_2 &= e(S_0, rH(ID_2))
 \end{align*}
 \]

2. ID_0 generates the encryption key

 \[K = x_0 \oplus x_1 \oplus x_2 = e(S_0, rH(ID_0)) \oplus e(S_0, rH(ID_1)) \oplus e(S_0, rH(ID_2))\]

3. ID_0 computes

 \[
 \begin{align*}
 y_1 &= x_0 \oplus x_2 = e(S_0, rH(ID_0)) \oplus e(S_0, rH(ID_2)) \\
 y_2 &= x_0 \oplus x_1 = e(S_0, rH(ID_0)) \oplus e(S_0, rH(ID_1))
 \end{align*}
 \]

4. ID_0 encrypts the email using the key K and sends (r, y_1, y_2) along with the email.

5. For the two recipients, ID_1 computes

 \[
 \begin{align*}
 &= y_1 \oplus e(rH(ID_0), S_1) \\
 &= x_0 \oplus x_2 \oplus e(rH(ID_0), S_1) \\
 &= x_0 \oplus x_2 \oplus e(sH(ID_0), rH(ID_1)) \\
 &= x_0 \oplus x_2 \oplus e(S_0, rH(ID_1)) \\
 &= x_0 \oplus x_2 \oplus x_1 \\
 &= K
 \end{align*}
 \]

 and ID_2 computes

 \[
 \begin{align*}
 &= y_2 \oplus e(rH(ID_0), S_2) \\
 &= x_0 \oplus x_1 \oplus e(rH(ID_0), S_2) \\
 &= x_0 \oplus x_1 \oplus e(sH(ID_0), rH(ID_2)) \\
 &= x_0 \oplus x_1 \oplus e(S_0, rH(ID_2)) \\
 &= x_0 \oplus x_1 \oplus x_2 \\
 &= K
 \end{align*}
 \]

Thus, both email recipients can derive the same key K that was originally generated by the email sender ID_0.