
Integrity Coded Relational Databases (ICRDB) - Protecting Data
Integrity in Clouds

Jyh-haw Yeh

Dept. of Computer Science, Boise State University,

Boise, Idaho 83725, USA

Abstract

1 Introduction

Database-as-a-service (DaaS) has been commercialized just recently in cloud industry such as Sales-
force’s Database.com, Amazon’s Relational Database Service, Heroku’s SQL DaaS, and Google’s
Google Cloud SQL, etc. However, outsourcing data to clouds, in addition to data privacy, data
integrity is another important concern that slows down the adoption of this new emerging DaaS
technology.

This paper describes an Integrity Coded Relational Database (ICRDB) that was designed to
protect data integrity for the outsourced database in clouds. ICRDB ensures clients the detection
of three types of attacks from malicious clouds. These three attacks are

1. Incomplete attack: For a query that returns a set of data, the cloud doesn’t honestly return all
matched data.

2. Forgery attack: The cloud returns some forged data. This type of attacks includes fabrication
attacks and substitution attacks.

3. Unfresh data attack: The cloud returns unfresh data (has been removed) rather than up-to-date
data.

Clients may request clouds to update or remove data. Untrusted clouds can maliciously keep
these removed data along with their integrity codes and launch unfresh data attack later. The
unfresh data and their integrity codes may bypass the integrity check. Thus, the better way to deal
with the unfresh data attack will be a scheme that is similar to X.509 standard with Certificate
Revocation List (CRL) used in public key cryptosystems.

Applying the x.509 concept here, each generated integrity code for the database will have an
incremental serial number. The integrity code thus can be an ID-based signature with the serial
number embedded inside the signature. The client requires to maintain an Integrity Code Revo-
cation List (ICRL) that keeps track of the integrity codes of those removed/replaced data. In this
way, the client will have enough information to ensure the freshness of returned data.

Any query returns a group of entities/values that share some properties, specified by the condi-
tions in SQL WHERE clause. Ideally, if each such group in a database is assigned an unforgeable
integrity code, then the incomplete and forgery attacks can be easily detected. However, the num-
ber of possible groups in a relational database is exponential to the number of data items (attribute
values). Even worse, it will be extremely expensive to update data since all the group integrity

1

codes related to the updated data will need to be re-assigned. Obviously, this approach is not
practical.

We proposed an approach that only assigns three integrity codes SV C (Single-Value Code),
SGC (Single-Group code) and 3V C (3-Value Code) to each attribute value. In addition, another
integrity code CGC (Column Group Code) is assigned to each column. Thus, the number of
integrity codes in our approach will be just linear to the number of data items in the database.

The client generates all the integrity codes, attaches all of them (except CGC) to their corre-
sponding attribute values and then outsources the whole database to the clouds. Let A(e) be the
value of attribute A for an entity e. These four integrity codes are described as below:

1. Single-Value Code SV C(A(e)) is an unforgeable code that couples the attribute value A(e) to
its owner entity e together.

2. Single-Group Code SGC(A(e)) is an unforgeable code that groups all entities e′ whose attribute
value A(e′) = A(e).

3. 3-value Code 3V C(A(e)) is an unforgeable code that couples three values A(e1), A(e2), and
A(e3) together, where A(e1) is the next lower value than A(e) in the column, A(e2) = A(e),
and A(e3) is the next higher value than A(e) in the column.

4. Column-Group Code CGC(A) is an unforgeable code that groups all values of the entire column
under the attribute A.

The first three codes are associated with each attribute value. The number of SV C’s, SGC’s
and 3V C’s grows linearly as data accumulated. It’s not practical to store these integrity codes
locally. Thus, these three kinds of integrity codes will be outsourced to the clouds along with data.
Different from these three codes, a CGC is associated with a column rather than each attribute
value. The number of CGC’s in a database is fixed and which is equal to the number of attributes
in the database. Therefore, CGC’s can actually be kept in client’s side to reduce the complexity
of data updates.

2 Example Database

Throughout this document, we use the company database in Elmasri/Navathe’s book “Fundamen-
tals of Database Systems” as example to illustrate our integrity algorithms. The example database
is shown in the last page of the document.

3 Communication Architecture

Since the ICRDB requires clients performing integrity code generation and verification, as well as
modifying SQL queries to request extra information for integrity verification (described in next
section), a proxy server taking care of all these work is desired. The proxy server should provide
a GUI API for the end users for friendly usage. Figure 1 shows the communication architecture
between clients and clouds.

2

Backend DBMS

Frontend W
eb Service

C
lient’s Proxy

User 3

User 2

User 1Clouds

Backend DBMS

Frontend W
eb Service

C
lient’s Proxy

User 3

User 2

User 1Clouds

Figure 1: ICRDB communication architecture between clients and clouds

4 ICRDB

4.1 Integrity Codes Construction

We choose to use the RSA signature scheme to generate the integrity codes. The reason of using
RSA is because of its multiplication homomorphism. With this property, re-assigning new integrity
codes will be much more efficient in case of inserting, updating or removing data. The integrity
code generation needs to ensure the unforgeability of grouping but also needs to make sure the
unforgeability of each attribute value to its owner (i.e., the entity owns the attribute value). In
relational databases, each table has a primary key attribute K that can uniquely identify each
entity. Thus, the following describes the format of the integrity codes, where SIG{v} stands for
the RSA signature on v. That is,

SIG{v} = vd mod N (1)

where d, e and N are RSA keys.

1. SV C(A(e)) is a pair of quantities

SV C(A(e)) = (SIG{s × A × A(e) × K(e)}, s) (2)

where × means multiplication, s is a unique serial number for each integrity code, A is the
attribute name, and K(e) is the primary key value of the entity e.

2. SGC(A(e)) is a pair of quantities

SGC(A(e)) = (SIG{s × A × A(e) × K(e1) × K(e2) × . . . × K(en)}, s) (3)

where e1, . . . en are all entities (including e) in the table whose attribute value A(ei) = A(e).

3. 3V C(A(e)) is a pair of quantities

3V C(A(e)) = (SIG{s × (A + x + A(e) + z)}, s) (4)

where + means concatenation and the size of the concatenated string must be smaller than
the size of RSA’s modulo N . x and z in Equation (4) are next lower and next higher values
than A(e) in the column, respectively. Both x and z could be NULL if no next lower or no
next higher values. If A(e) is the MIN (or MAX) in the column, then x (or z) will be NULL.
This 3V C(A(e)) is different from the above two codes in that it does not tight the value

3

A(e) to its key attribute value K(e). This code, along with either SV C(A(e)) or SGC(A(e)),
will be used together to check the completeness for a range query. Another difference is
that we use concatenation rather than multiplication to construct the signature. The four
concatenated quantities can be recovered by computing

1) s × (A + x + A(e) + z) = (SIG{s × (A + x + A(e) + z)})e mod N , where e is the RSA
public key. Note that even (e,N) is the RSA public key, but it will be only known by
the client since in this application, only the client generates and verifies signatures.

2) A + x + A(e) + z = s−1 × s× (A + x + A(e) + z) mod N , where s−1 is the multiplicative
inverse of s mod N .

4 CGC(A) is a single quantity

CGC(A) = SIG{A × A(e1) × A(e2) × . . . × A(en)} (5)

where A(e1), A(e2), . . . , A(en) inside the SIG function are all values under attribute A. No
serial number is required for CGC’s since they are stored locally in the client’s side.

4.2 Reducing number of integrity codes

All attribute values (except the key values) need to have the integrity code SV C. Theoretically
each non-key attribute value can have up-to three integrity codes. This full assignment is overkill
in some cases. The following lists some attribute values which do not need to have three integrity
codes.

If an attribute has a ”unique” keyword in its DDL definition, any such attribute value’s SV C and
SGC actually provide the same integrity checking function. For example, if mgrssn is defined as
unique, then SV C(mgrssn) is the same as SGC(mgrssn) since both codes couple a single mgrssn
to its department number (key value).

Values of an attribute that have no natural ordering often do not need to have the 3V C integrity
codes since 3V C is used for completeness checking in a range query. It doesn’t make sense to
have attributes without natural ordering in a range condition. For example, mgrssn has no natural
ordering (yes, sometimes we may need to sort the mgrssn values in a report, but such alphabetical
sorting is not a natural ordering of mgrssn) and thus mgrssn does not need to have 3V C. For
example, it doesn’t make sense to have a query ”retrieve the names of departments, of which the
manager’s social security number is greater than ’123456789’;” There are some other attributes
in the company database may not need to have 3V C either such as address, sex, superssn and
dno in the employee table, both dnumber and dlocation in the dept locations table, and plocation
and dnum in the project table. Of course, whether to assign a 3V C to an attribute needs to be
pre-determined by clients because they are the data owners and will know whether range queries
are applicable to that attribute.

Based on the above guidelines, Table 1 to Table 3 shows a possible integrity code assignment for
some tables in the company database.

4.3 Integrity code verification

Clients are able to directly verify the integrity of returned query results if the query is the most
basic query with none or one condition. Using the company database as an example, consider the
following two queries:

Q1:”retrieve the names of all employees in the company;” and
Q2:”retrieve the names of employees who work for department 5.”

4

Table 1

EMPLOYEE

name ssn bdate address sex salary superssn dno

SV C x x x x x x x
SGC x x x x x x x
3V C x x x
CGC x x x x x x x x

Table 2

DEPARTMENT

dname dnumber mgrssn mgrstartdate

SV C x x x
SGC x
3V C x x
CGC x x x x

Table 3

DEPENDENT

essn dependent name sex bdate relationship

SV C x x x x x
SGC x x x x x
3V C x x
CGC x x x x x

5

For Q1, if the returned result is Table 4 below, with the column integrity code CGC(name) = SIG{
name × Smith × Wong × Zelaya × Wallace × Narayan × English × Jabbar × Borg }, the client
should be able to verify the completeness and non-forgery of the result.

Table 4

name

Smith
Wong
Zelaya
Wallace
Narayan
English
Jabbar
Borg

For Q2, if the returned result is something like Table 5 below, the client can then check the integrity

Table 5

name ssn dno

Smith, SV C 123456789 5, SGC

Wong, SV C 333445555 5, SGC

Zelaya, SV C 666884444 5, SGC

English, SV C 453453453 5, SGC

as follows:

1. Verify the completeness of the returned result: Compute the SIG{s × dno × 5× 123456789 ×
333445555× 453453453× 666884444} and check whether it is equal to the one in any SGC of
the return result.

2. Check forgery attacks: For each name (say Smith), compute SIG{s × name × Smith × ssn}
and compare it to the corresponding SV C in the returned result.

3. Check the freshness of data: For each data item inserted, the client will generate an integrity
code with a new serial number. Use the similar scheme as modified X.509 to keep track of
removed items’s integrity codes so that if a returned result containing already removed data,
it can be detected.

4.4 Parsing a query (query transformation)

Using example queries Q1 and Q2 above, their original SQL queries would look like

Q1: select name from employee;
Q2: select name from employee where dno=5;

With CGC’s stored in the client’s side, Q1 actually returns enough information for the integrity
checking. However, for Q2, the query asks the cloud to return names of employees in department
5, which does not contain enough information for integrity checking. In order to get the required
information, the SQL query needs to be modified to something like

6

Q2’: select name, SVC(name), ssn, dno, SGC(dno)
from employee
where dno=5;

Thus, in the client proxy server, a software or an application programming interface API (can be
developed by either the client, the clouds or a third-party software developer) is needed for parsing
(converting) a standard query to a modified query as above.

4.5 Range queries

The design of 3V C integrity code is for checking the completeness of returning results in range
queries. Query 3 below shows a range query example.

Q3: select name from employee where bdate > ’1965-12-31’;

For the example company database, three employees were born after 1965, who are Zelaya (1968-01-
19), English (1972-07-31) and Jabbar (1969-03-29). If the cloud is honest, the cloud would return
the three employees plus some information for integrity checking as shown in Table 6.

Table 6

name ssn bdate

Zelaya, SV C 999887777 1968-01-19, SGC , 3V C

English, SV C 453453453 1972-07-31, SGC , 3V C

Jabbar, SV C 987987987 1969-03-29, SGC , 3V C

In order to include necessary integrity codes as in Table 6, the query API should modify Q3 to

Q3’: select name, SVC(name), ssn, bdate, SGC(bdate), 3VC(bdate)
from employee
where bdate > ’1965-12-31’;

Now, the client’s API checks the completeness using the returned 3V C’s. The checking starts at
the oldest employee Zelaya’s 3V C, which can recover the birthdates of Smith, Zelaya, and Jabbar.
This checking ensures that no other employees were born within this range 1965-01-09 (Smith’s
birthdate) to 1969-03-29. This implies no other employees were born from 1965-12-31 to 1969-03-29.
Next 3V C needs to be checked is English’s 3V C, which ensures that no other employees (except
English) were born after 1969-03-29.

After the completeness checking, check the SGC’s to ensure that each bdate is correctly associ-
ated with its ssn. In this example, the check of SGC’s also ensures that no un-returned employee
was born on the same date as those employees in Table 6. Finally, check the SV C’s to ensure that
each name is correctly associated with its ssn. Successful checking of both SGC and SV C, we
know that each name is correctly associated with the bdate in the returned table.

4.6 Queries with multiple conditions

Let’s consider a query Q4: ”retrieve the names of employees who work for department 5 and were
born after 1965;”

Q4: select name
from employee
where bdate > ’1965-12-31’ and dno = 5;

7

The result of this query can actually be derived by finding an intersection of two sets: the set of
all employees in department 5 and the set of employees who were born after 1965. Table 7 shows
the correct result.

Table 7

name ssn bdate dno

English, SV C 453453453 1972-07-31, SGC , 3V C 5, SGC

However, only returning the above result is not enough for completeness checking since the client
will need all ssn who work in department 5 to verify the returned SGC, but the table above does not
contain those employees in department 5 who were born before or in 1965. Similarly, the returned
bdate data is also not enough for completeness checking since there are some other employees not
included in the above table but who were born after 1965.

Therefore, more information is required for clients to perform integrity checking. In order to do
so, the query API in the client side should transform the query to

Q4’: select name, SVC(name), SSN, bdate, SGC(bdate), 3VC(bdate), dno, SGC(dno)
from employee
where bdate > ’1965-12-31’ OR dno = 5;

Note that the above modified query changes the condition operator from AND to OR so that the
modified query would return the UNION of two sets rather than the INTERSECT of two sets. For
the modified query, a trustworthy cloud would return the information shown in Table 8 below:

Table 8

name ssn bdate dno

Smith, SV C 123456789 1965-01-09, SGC , 3V C 5, SGC

Wong, SV C 444335555 1955-12-08, SGC , 3V C 5, SGC

Zelaya, SV C 999887777 1968-01-19, SGC , 3V C 4, SGC

Narayan, SV C 666884444 1962-09-15, SGC , 3V C 5, SGC

English, SV C 453453453 1972-07-31, SGC , 3V C 5, SGC

Jabbar, SV C 987987987 1969-03-29, SGC , 3V C 4, SGC

After receiving the above information, the client’s API performs the steps below :

1. Checking the completeness and non-forgery of bdate by verifying the bdate’s 3V C and SGC

of all employees who were born after 1965. If all the 3V C’s and SGC’s are valid, it indicates
all employees who were born after 1965 are returned. In this example, the bdate 3V C’s of
Zelaya and English will be checked. By checking each SGC of bdate, we can ensure that no
other not-returned employees whose bdates are the same as those returned, as well as each
bdate is correctly associated with its key value.

2. Checking the completeness and non-forgery of dno by verifying the dno’s SGC of department
5. If the SGC is valid, it indicates all employees in department 5 are returned.

3. Select tuples that satisfy both conditions, bdate >′ 1965 − 12 − 31′ AND dno = 5, from Table
8, which results in Table 9 below:

4. Checking the non-forgery of each name by verifying its SV C. If the SV C is valid, it indicates
the result is correct. The API then returns the result as Table 10 below to the client.

8

Table 9

name ssn bdate dno

English, SV C 453453453 1972-07-31, SGC , 3V C 5, SGC

Table 10

name

English

4.7 Queries across multiple tables with JOIN operations (key and foreign key rela-
tionship)

Usually, to access data across two tables, it requires a ”JOIN” condition that specify the relationship
between the primary key of one table and a foreign key of another table. Use query 5 below as an
example: ”retrieve the names of managers and their department names ;”

Q5: select name, dname
from employee, department
where ssn = mgrssn;

To have enough information for integrity checking, the modified query may look like:

Q5’: select name, SVC(name), ssn, mgrssn, SVC(mgrssn), dnumber, dname, SVC(dname)
from employee, department
where ssn = mgrssn;

which would return information as in Table 11.

Table 11

name ssn mgrssn dnumber dname

Wong, SV C 333445555 333445555, SV C 5 Research, SV C

Wallace, SV C 987654321 987654321, SV C 4 Administration, SV C

Borg, SV C 888665555 888665555, SV C 1 Headquarter, SV C

The client’s proxy receives the above information and then performs

1. Completeness checking: Verify the CGC(mgrssn) to ensure the returned result containing all
managers.

2. Query condition checking: Loop through the result to check all tuples having the same ssn and
mgrssn.

3. Non-forgery checking: Verify all returned SV C’s to ensure that each returned name is indeed
the name of the corresponding ssn and each returned dname and mgrssn are indeed the dname
and mgrssn of the corresponding dnumber.

4. After all integrity codes checked, the query API returns the result shown in Table 12 to the
client.

9

Table 12

name dname

Wong Research
Wallace Administration
Borg Headquarter

4.7.1 Which CGC code should be checked in a join condition?

From the above example, you may notice we only check one of the two CGC codes of the two
attributes in the join condition. The general guidelines of which CGC to be checked are

1. If only one attribute is a total participation (TP) in the relationship, then check the CGC of
that attribute. For example,

employee.ssn = department.mgrssn, where department.mgrssn is a TP.
employee.ssn = dependent.essn, where dependent.essn is a TP.

2. If both attributes are total participation in the relationship and the cardinality ratio is 1: N,
then check the CGC of the N side attribute. For example,

employee.dno = department.dnumber, where employee.dno is the N side.

3. If both attributes are partial participation in the relationship, then check the CGC’s of both
attributes. For example,

Q6: select e.name s.name
from employee e, employee s
where e.superssn = s.ssn;

Another example, query 7: ”retrieve the department names whose managers have depen-
dents.”

Q7: select distinct dname
from department, dependent
where mgrssn = essn;

For the query 7, in order to use CGC’s to verify the completeness of result, all values of
mgrssn and essn need to be returned. Thus, the modified query is

Q7’: select dname, SVC(dname), dnumber, mgrssn, SVC(mgrssn), essn
from department, dependent
where mgrssn]=[essn;

where]=[means full outer join. Note that the modified query does not have the “distinct”
key word. Table 13 shows the returning result of Q7’.

The query API verifies the integrity by

1) Checking completeness: Verify CGC(mgrssn) and CGC(essn) to make sure the table
contains all mgrssn and all essn.

10

Table 13

dname dnumber mgrssn essn

Research, SV C 5 333445555, SV C 333445555
Research, SV C 5 333445555, SV C 333445555
Research, SV C 5 333445555, SV C 333445555
Administration, SV C 4 987654321, SV C 987654321
Headquarter, SV C 1 888665555, SV C null
null null null 123456789
null null null 123456789
null null null 123456789

Table 14

dname dnumber mgrssn essn

Research, SV C 5 333445555, SV C 333445555
Research, SV C 5 333445555, SV C 333445555
Research, SV C 5 333445555, SV C 333445555
Administration, SV C 4 987654321, SV C 987654321

2) Checking the original query condition: Loop through the table and get rid of tuples which
do not have matching mgrssn and essn. The remaining table is shown in Table 14.

3) Checking non-forgery: Verify all SV C’s to make sure that each pair of mgrssn and dname
in each tuple are not forged, and thus, are indeed for the same department.

4) Performing the selection part of the original query and then return the result to the client.

4.8 Aggregate functions

4.9 Aggregate functions over a whole table

With the construction of the integrity code 3V C, the integrity checking of query results with
aggregate functions MIN and MAX over a whole table can be solved easily.

Q8: select name, MIN salary
from employee;

=⇒
Q8’: select name, SVC(name), ssn, MIN salary, SGC(salary), 3VC(salary)

from employee;

From the returned 3V C, the salary can be recovered and it can be ensured that it is indeed a min
salary if the next lower salary is a NULL. The SGC(salary) ensures the returned ssn is the only
employee with the minimum salary. Similarly, the MAX function works the same way.

Q9: select name, MAX salary
from employee;

=⇒
Q9’: select name, SVC(name), ssn, MAX salary, SGC(salary), 3VC(salary)

from employee;

For COUNT, SUM, or AVE functions, the entire column needs to be returned for integrity checking.

11

Q10: select COUNT *
from employee;

=⇒
Q10’: select any attribute A

from employee;

Q11: select AVE salary
from employee;

=⇒
Q11’: select salary

from employee;

After the completeness check of the returned table using an appropriate CGC, the API returns the
user the number of tuples or the average salary of the whole table, respectively. Similar techniques
can be applied to the function SUM.

4.9.1 Aggregate functions over a partial table

If the aggregate functions MIN, MAX, COUNT, SUM and AVE are applied to a partial table,
usually the SGC and/or 3V C can ensure the completeness.

Q12: select name, MIN salary
from employee
where dno = 5;

=⇒
Q12’: select name, SVC(name), ssn, salary, SVC(salary), dno, SGC(dno)

from employee
where dno = 5;

The returned SGC(dno) in Q12’ can verify the completeness.

Q13: select COUNT *
from employee
where bdate > ’1965-12-31’;

=⇒
Q13’: select ssn, bdate, SGC(bdate), 3VC(bdate)

from employee
where bdate > ’1965-12-31’;

After the query API verifies the integrity codes for completeness and non-forgery of the returned
table, it performs the original MIN, MAX, COUNT, SUM or AVE function over the table and
returns the result to the client.

4.9.2 Aggregate functions with grouping attributes

In order to verify the completeness and non-forgery, the entire column of the grouping attribute
and the attribute applying the aggregate function, along with integrity codes, need to be returned.

Q14: select dno, AVE(salary)
from employee
group by dno
having (COUNT *) > 2;

12

=⇒
Q14’: select dno, SVC(dno), ssn, salary, SVC(salary)

from employee;

After checking the completeness (using CGC(dno)) and non-forgery (using SV C’s) of the returned
table, the query API applies the aggregate function to each group and return the result to the
client.

4.10 Nested Queries

First of all, the clients should avoid to use nested SQL queries if single level SQL queries can do
the job. In this document, we proposed two approaches to deal with nested queries:

1. The query API converts the nested query to a single level query if possible. The integrity codes
should be included in the converted query for the completeness and non-forgery checking as
described in previous sections.

2. The query API breaks a nested query to several basic queries. Each basic query will return
a set of values. The result of the nested query can actually be derived by performing some
set operations on these sets of values. To ensure completeness, set operations on these sets
will be performed by the client’s query API rather than by the clouds. Thus, the query API
needs to store all these returned sets until the final result of the original nested query is
generated. The integrity codes should be included in each basic query for the completeness
and non-forgery checking as described in previous sections.

Approach 2 always works for any nested query. However, this approach is less efficient. We would
suggest using approach 1 if possible. If a nested query cannot be converted to a single level query,
approach 2 will be applied.

In this section, we would use some examples to demonstrate these two approaches, as well as
some algorithms of converting nested queries to single level queries.

4.10.1 Examples to use approach 2

This section gives two examples to show how to use approach 2 to take care of nested queries.

Q15: retrieve the names of employees whose salary is more than all employees in department 5.

Q15: select name
from employee
where salary > all (select salary

from employee
where dno = 5);

The above request cannot be done by a single level query. Thus, we would use approach 2 to break
it to two basic queries as follows: The query API first issues Q15’ below to the clouds and waiting
for the result.

Q15’: select salary, SVC(salary), ssn, dno, SGC(dno)
from employee
where dno = 5;

After the query API verifies the completeness and non-forgery of the result, the API finds the MAX
salary of the result and let it be MAX SALARY. A second basic query Q15” below will be issued
to the clouds.

13

Q15”: select name, SVC(name), ssn, salary, SGC(salary), 3VC(salary)
from employee
where salary > MAX SALARY;

Again the query API verifies the integrity codes for the returned result and then report the names
to the clients.

The second example query 16 using approach 2 is described below:

Q16: retrieve the names of employees who work on all projects located in ’Houston’.

This query cannot be represented by a single level query. The following is the nested query for it:

Q16: select name
from employee
where (select pno

from works on
where ssn = essn)

contains
(select pnumber
from project
where plocation = ’Houston’);

The query API breaks it to two basic queries Q16A and Q16B as follows, and sends them both to
the clouds.

Q16A: select pnumber, plocation, SGC(plocation)
from project
where plocation = ’Houston’;

Q16B: select name, SVC(name), ssn, essn, pno, SGC(essn)
from employee, works on
where ssn = essn;

Two sets of results will be returned from the clouds, the query API verifies the integrity of both
sets first. Let the two sets are set1 and set2, which are the results of Q16A and Q16B, respectively.
The API can then perform the following query over these two sets:

Q16C: select distinct name
from set2 B
where (select pno

from set2 C
where B.ssn = C.ssn)

contains
(select pnumber
from set1);

The above query actually can be done by a procedure with a nested loop if the API does not have
the query processing capability.

14

4.10.2 Examples to use approach 1

We use nested queries 17 to 20 below to demonstrate how to use approach 1.

Q17: select name
from employee
where ssn in (select essn

from dependent);
=⇒
Q17’: select name

from employee, dependent
where ssn = essn;

=⇒
Q17”:select name, SVC(name), ssn, essn

from employee, dependent
where ssn = essn;

The returned essn will be CGC checked for completeness.

Q18: (select pnumber
from project, department, employee
where dnum = dnumber and mgrssn = ssn and name = ’Smith’)

UNION
(select pno
from works on, employee
where essn = ssn and lname = ’Smith’);

=⇒
Q18’: select pnumber, dnum, SGC(dnum), dnumber, mgrssn, SVC(mgrssn),

ssn, name, SVC(name), essn, pno, SGC(essn)/SGC(pno)
from project, department, employee, works on
where (dnum = dnumber and mgrssn = ssn and name = ’Smith’)

OR
(pnumber = pno and essn = ssn and name = ’Smith’);

Q19: select essn
from works on a
where exists (select pno, hours

from works on b
where a.pno = b.pno and a.hours = b.hours

and b. essn = ’123456789’);
=⇒
Q19’: select a.essn, a.pno, SGC(a.essn)/SGC(a.pno), a.hours, SGC(a.hours),

b.essn, b.pno, SGC(b.essn)/SGC(b.pno), b.hours, SGC(b.hours),
from works on a, works on b
where a.pno = b.pno and a.hours = b.hours and b.essn = ’123456789’;

Q20: select name
from employee
where salary > any (select salary

from employee

15

where dno = 5);
=⇒ This query is equivalent to
Q20’: select distinct a.name

from employee a, employee b
where a.salary > b.salary and b.dno = 5;

=⇒ API convert to
Q20”:select distinct a.name, SVC(a.name), a.ssn, a.salary, SGC(a.salary),

b.ssn, b.salary, SGC(b.salary), b.dno, SGC(b.dno)
from a.employee, b.employee
where a.salary > b.salary and b.dno = 5;

In summary, the following lists some algorithms for converting nested queries to single level queries:

1. If a nested query uses ”exists”, or ”in” in conditions, it usually can be converted to a single-level
query. For example: Q17, Q19.

2. Queries with set operations UNION/INTERSECT may be converted to conditions with
OR/AND respectively. For example, Q18.

3. Queries using ”> (=, <) any (some)” can be converted by the following rule:

”select a from T where b >=< any (select c from R)”
=⇒ ”select distinct a from T, R where b >=< c”

”> (= or <) some”: equivalent to ”> (= or <) any” , For example, Q20.

4.11 Insert A Tuple

Inserting new tuples may affect some existing integrity codes and thus code re-assignment is re-
quired. Before the insertion, the client needs to request the cloud to return information listed below
for new integrity codes generation.

1. Re-assignment of all CGC’s in the table: All CGC codes will be affected by adding a new
tuple. Because we choose to use RSA signature scheme with multiplication homomorphism,
the re-generation of CGC’s do not need to reference the data stored in clouds. The client’s
API assigns a new CGC for each attribute A. The new CGC will be

CGC(A)new = SIG{A(new)} × CGC(A)original mod N (6)

where A(new) is the value of attribute A of the to-be inserted tuple and CGC(A)original and
CGC(A)new are the CGC codes of A before and after the insertion.

2. The SV C’s for the new tuple can be directly computed by the API. No existing SV C’s stored
in clouds will be affected.

3. For each attribute A having SGC , the client needs to request clouds to return the affected
existing SGC(A(e))’s that have the same attribute value as A(new), i.e., A(e) = A(new).
For example, if the new tuple to be inserted is an employee in department 5, then the cloud
will be asked to return all SGC’s (for dno=5). All these SGC(A(e))’s need to be renewed
based on Equations (7) and (8).

SGC(A(e))new = (SIGnew, snew) (7)

16

and
SIGnew = (SIG{snew × K(new) × (s−1

old mod N)} × SIGoriginal) mod N (8)

where snew is the new serial number, K(new) is the key value of the to-be inserted tuple and
s−1

old mod N is the inverse of old serial number modN . The client then sends back clouds the
new SGC’s to replace those original SGC’s. All replaced SGC’s will be revoked.

4. For each attribute A having 3V C, the client issues a query asking clouds to return the affected
3V C’s:

select A, 3VC(A)
from the table containing attribute A
where A is the smallest but > A(new) OR

A is the largest but < A(new) OR
A = A(new);

If one or more tuples returned having A(new) value, then no existing 3V C’s will be affected,
except the one to-be inserted. Otherwise, let the two groups of 3V C’s returned are

3V C(y) = (SIG{s × (A + x + y + z)}, s) (9)

where y is the attribute A’s value and y is the largest but < A(new) in the column;

3V C(z) = (SIG{s × (A + y + z + w)}, s) (10)

where z is the attribute A’s value and z is the smallest but > A(new) in the column;

To re-assign each of the 3V C(y)’s, we just have to compute the following steps:

1) Recover A + x + y + z, given that the size of this concatenated string is not bigger than
the RSA modulo N .

2) If the returned y and z are substrings of the recovered string, then replace z by A(new)
in the recovered string

3) Generate the new 3V C(y)new = (SIG{snew × (A + x + y + A(new))}, snew)

Similarly, we can use the same technique to re-assign the new 3V C(z)’s. Finally, all replaced
3V C’s will be revoked.

4.12 Delete A Tuple

1. Re-assignment of all CGC’s in the table: All CGC codes will be affected by deleting a tuple.
The client’s API assigns a new CGC for each attribute A. The new CGC will be

CGC(A)new = SIG{A(old)−1 mod N} × CGC(A)original mod N (11)

where A(old) is the value of attribute A of the to-be deleted tuple, CGC(A)original and
CGC(A)new are the CGC codes before and after the deletion.

2. The SV C’s of the to-be deleted tuple will be revoked. No other SV C’s will be affected.

17

3. For each attribute A having SGC, the client needs to request clouds to return the affected
existing SGC(A(e))’s that have the same attribute value as A(old), i.e., A(e) = A(old). If
there is only one affected SGC with the same attribute value as A(old), or in other words,
the group has only one member that is going to be deleted, all we need to do is to revoke the
only SGC. If more than one affected SGC(A(e))’s due to the deletion of A(old), they need
to be re-assigned. For example, if the to-be deleted tuple is an employee (ssn = 123456789)
in department 5, then the cloud will be asked to return all SGC’s (for dno = 5). All these
affected SGC(A(e))’s need to be renewed based on Equations (12) and (13).

SGC(A(e))new = (SIGnew, snew) (12)

and

SIGnew = SIG{snew × (K(old)−1 mod N) × (s−1

old mod N)} × SIGoriginal mod N (13)

where K(old) is the key value for the to-be deleted tuple. The client then sends back clouds
the new SGC’s to replace those original SGC’s. All replaced SGC’s will be revoked.

4. For each attribute A having 3V C , the client issues a query asking clouds to return the affected
3V C’s:

select A, 3VC(A)
from the table containing attribute A

where A is the smallest but > A(old) OR
A is the largest but < A(old) OR
A = A(old);

If more than one tuples returned having A(old) value, then no existing 3V C’s will be affected,
except the one to-be deleted. Otherwise, let the two groups of 3V C’s returned are

3V C(y) = (SIG{s × (A + x + y + A(old))}, s) (14)

where y is the attribute A’s value and y is the largest but < A(old) in the column;

3V C(z) = (SIG{s × (A + A(old) + z + w)}, s) (15)

where z is the attribute A’s value and z is the smallest but > A(old) in the column;

To re-assign each of the 3V C(y)’s, we just have to compute the following steps:

1) Recover A + x + y + A(old), given that the size of this concatenated string is not bigger
than the RSA modulo N .

2) If the returned y and A(old) are substrings of the recovered string, then replace A(old)
by z in the recovered string.

3) Generate the new 3V C(y) = (SIG{snew × (A + x + y + z)}, snew).

Similarly, we can use the same technique to re-assign a new 3V C(z) by replacing A(old) by
y. All replaced 3V C’s will be revoked.

18

4.13 Update A Value

Updating a value is functionally equivalent to first delete the value and then insert back a new
value. Thus, the techniques used in both deletion and insertion can be used to update a value. For
each updated value, the following integrity codes will be affected

1. The corresponding CGC .

2. SV C of the data to be updated.

3. All grouping code SGC’s that the new data becomes a member.

4. All grouping code SGC’s that the old data was a member.

5. At most four groups of 3V C’s plus the 3V C for the data itself will be affected. Updating a
data is just like removing the data first and then inserting a new data back. Thus, at most
two groups of 3V C’s will be affected by removing the old data and at most two groups of
3V C’s will be affected by inserting the new data.

4.14 Reduce the size of ICRL

The size of Integrity Code Revocation List (ICRL) grows after each insertion, deletion or update.
If the list gets too long, the client may want to reduce the size of the ICRL for storage and search
efficiency. Similar to the modified X.509, the ICRL used here has a first valid serial number sf ,
followed by a list of revoked serial numbers as below.

Table 15

sf all revoked serial numbers (> sf) in an ascending order

The client performs the following steps to reduce the size of ICRL:

1. Identify s′f (> sf) as the new first valid serial number.

2. All valid integrity codes whose serial number s < s′f need to be renewed. To renew an integrity
code SV C, SGC, or 3V C,

1) The client assigns a new serial number snew (must be > s′f) to replace the old serial
number sold.

2) The client sends a triple of values (SIG{snew × (s−1

old mod N)}, sold, snew) back to the
clouds for the to-be-renewed integrity code.

3) The cloud replaces the original integrity code (SIGoriginal, sold) by (SIGoriginal×SIG{snew×
(s−1

old mod N)} mod N, snew).

3. The new ICRL will be

Table 16

s′f all revoked numbers (> s′f) in an ascending order

19

5 Performance Evaluation

6 Conclusion

Reference

20

Figure 2: Example company database

21

