Q1(10 points): Asymptotic Notations

(a) (3 points) Which one of the following is first wrong statement?
1. $\Theta(n) + O(n) = \Theta(n)$
2. $\Theta(n) + O(n) = O(n)$
3. $\Theta(n) + \Omega(n) = \Theta(n)$
4. $f(n) = o(g(n))$ implies $g(n) = \Omega(f(n))$

(b) (7 points) Try to use the basic definition of Θ-notation to show $n^2 - 10 \log_2 n = \Theta(n^2)$.

• Q2 (12 points): Divide-and-Conquer
Suppose that a computer does not know how to apply dynamic programming techniques
to compute a function \(f(n) \), but it knows how to use the divide and Conquer approach
to compute \(f(n) \) as follows. The computer takes only constant time for scalar arithmetic
operations.

\[
f(n) = \begin{cases}
0 & \text{if } n = 0 \\
1 & \text{if } n = 1 \\
f(n - 1) + f(n - 2) + n \log n & \text{if } n > 1
\end{cases}
\]

(a) (8 points) Please write down the three steps of Divide, Conquer and Combine to describe
how the computer calculates \(f(n) \).

Divide: Do nothing.
Conquer:

Combine:

(b) (4 points) Please write down the running time recurrence if \(f(n) \) is computed using the
above approach.
Q3 (24 points): Recurrences

(a) (8 points) Given a recurrence $T(n) = 3T(n - 1) + 1$, please draw the recursion tree and derive a tight bound of $T(n)$.
(b)(8 points) Given a recurrence $T(n) = 2T(n - 1) + n$, please use the substitution method to verify $T(n) = O(2^n)$.

Hint: use the hypothesis $T(n) \leq c(2^n - n)$ for some $c > 0$.

(c)(8 points) Please solve the recurrence $T(n) = 2T(n - 1) + n^2$ using the Master Method.

Hint: try to transfer the equation to another form and then solve it.
• Q4(24 points): Dynamic programming

(a)(9 points) For a Matrix-Chain problem with 4 matrices A_1, A_2, A_3 and A_4, please construct and draw the two tables as in the book if the dimension vector for these four matrices is $<3,1,5,4,2>$.

(b)(3 points) Based on the tables in (a), what is the optimal parenthesization for the product $A_1A_2A_3A_4$?
(c)(9 points) For a LCS (longest common subsequence) problem with two input sequences $X = < C, A, A, B, B, D, C >$ and $Y = < C, B, A, D, B, B, C >$, please draw the table(s) as in the book.

(d)(3 points) Based on the table(s) in (c), what is the longest common subsequence for X and Y?