CS 321 Data Structures (Spring 2022)

Instructor: Dr. Jyh-haw Yeh

Office: CCP 247 Phone: 208-426-3034

email: jhyeh@boisestate.edu

URL: http://cs.boisestate.edu/~jhyeh/cs321/cs321.html

Class Time: TueThur 4:30-5:45 PM

Location: CCP 243

Office Hours: TueThur 3:30-4:30 PM and Tue 5:45-6:30 PM

Teaching Assistants:

TAs and Tutors	Office Hours	Location
(TA) Royal Pathak	Check tutoring Center Calendar	CCP 241
(TA) Chidi Agbo	https://www.boisestate.edu/coen-	
(Tutor) Jonathan Porter	cs/currentstudents/success-tutoring/	

Textbook: Introduction to Algorithms, 4th Edition by T.H. Cormen, C.E. Leiserson, R.L. Rivest and C. Stein/McGraw-Hill

Course Objectives: At the end of course, student will be

- able to apply the most efficient known algorithms to solve searching and sorting problems.
- familiar with a variety of different data structures and their appropriate usage.
- able to choose appropriate data structures to implement algorithms.
- able to apply basic graph search algorithms (such as BFS and DFS) to applications.

Catalog Description: Sorting, searching, and order statistics. Further data structures: trees, priority queues, dictionaries, balanced search trees, B-Trees, heaps, hash tables, and graphs.

Pre-requisites: CS 221 Computer Science II, and MATH 189 Discrete Mathematics

Co-requisites: CS-HU 250 Intro. to Version Control, CS-HU 271 Agile Development, and CS-HU 310 Intro to Database System Usage

Course Outline: The following is an estimated schedule. The teaching and learning pace of every semester may be different.

Weeks	Topics	Chapter Readings	Labs, Homeworks & Exams
	Lecture 1: Getting Started	Chapter 2	
	 Insertion sort 		
	 Analyzing Algorithms 		
Week 1	\circ Analyzing insertion sort		
	best, average and worst		
	cases running time		
	Lecture 2: Programming	Programming	Assign Programming assignment #1:
	Assignment #1 Discussion	assignment #1	Performance simulation of 1- and 2-
		handout	level caches
	Lecture 1: Sorting algorithms	Chapter 2	
	and analysis		
	 Merge sort 		
	 Selection sort 		
	Lecture 2: Growth of	Chapter 3	
	Functions		
	 Asymptotic notations: 		
Week 2	\circ Upper bound (O)		
	\circ Tight bound (Θ)		
	\circ Lower bound (Ω)		
	Lecture 1: Cont'd on Growth	Chapter 3	
	of function		
Maak 2	 Cont'd on asymptotic 		
week 3	notations		
	 Common functions – 		
	constants, logarithms,		
	polynomials, exponentials,		
	super-exponentials		
	Lecture 2: Heapsort	Chapter 6	
	 Heaps 		
	 Maintaining heap property 		
	 Building a heap 		
	Lecture 1: Heapsort	Chapter 6	
	 Heapsort algorithm 		
	 Priority queue 		
Week 4		Due and under	A
	Assignment #2 Discussion	Programming	Assign Programming assignment #2:
	Assignment #2 Discussion	assignment #2	simulation of CPU scheduling using a
		nanuout	priority queue.
	Lecture 1: Quicksort	Chapter 7	Assign Homework #1 that covers all
	 Description of quicksort 		topics from week 1 to week 5

	 Performance of quicksort 		
	 Randomized quicksort 		
	 Analysis of quicksort 		
Week 5	Lecture 2: Sorting in Linear Time • Lower bounds for sorting • Counting sort • Radix sort • Summary • Comparing all sorting algorithms in terms of time complexity, space	Chapter 8	
	stableness		
Week 6	Lecture 1: Written Homework #1 Discussion (Preparation of Mid-term Exam #1)	Written homework #1 handout	
	Lecture 2: Mid-term Exam 1		Exam #1 covers all topics from week 1 to week 5
Week 7	Lecture 1: Elementary Data Structures • Stacks, queues and buffers • Linked lists • 8 different linked lists • JAVA ArrayList	Chapter 10	
	Lecture 2: Hash Tables • Direct address tables • Hash tables • Hash functions	Chapter 11	
Week 8	 Lecture 1: Hash Tables Open addressing – linear probing Open addressing – quadratic probing 	Chapter 11	
	 Lecture 2: Hash Tables Open addressing – double hashing Hash table performance analysis 	Chapter 11	

	Lecture 1: Programming Assignment #3 Discussion	Programming assignment #3 handout	Assign Programming assignment #3: Performance simulation of linear probing and double hashing tables
Week 9	 Lecture 2: Trees Tree concept and terminology, recursive data structures, expression trees 	Classnotes (Page 35-38)	
Week 10	 Lecture 1: Binary Search Trees What is a binary search tree? Querying a binary search tree Insertion and deletion 	Chapter 12	
	Lecture 2: B-Trees Definition of B-trees Search on B-trees 	Chapter 18	
Week 11	Spring Break		
Week 12	 Lecture 1: B-Trees Insert operation on B-trees Delete operation on B-trees 	Chapter 18	Assign Homework #2 that covers all topics from week 7 to week 11
	Lecture 2: Programming Assignment #4 Discussion	Programming assignment #4 handout	Assign Programming assignment #4: Bioinformatics – storing/searching human DNA subsequences in a BTree binary file.
Week 13	Lecture 1: Written Homework #2 Discussion (Preparation of Mid-term Exam #2) Lecture 2: Mid-term Exam #2	Written homework #2 handout	Exam #2 covers all topics from week
			7 10 WEEK 11
Week 14	 Lecture 1: AVL Trees Definition Four rotations AVL insert AVL delete 	Classnotes (page 48-52)	
	Lecture 2: Huffman TreesDefinition and its data compression application	Class discussion	

	 Huffman tree construction Huffman code encoding Huffman code decoding 		
Week 15	 Lecture 1: Elementary Graph Algorithms Representations of graphs Adjacency list (Adj-L) Adjacency matrix (Adj-M) Adj-L vs. Adj-M in both time and space complexities Breadth-first search 	Chapter 20	
	Lecture 2: Elementary Graph Algorithms • Depth-first search • Topological sort	Chapter 20	Assign Homework #3 that covers all topics from week 1 to week 16
Week 16	 Lecture 1: Minimum Spanning Trees Growing a minimum spanning tree Kruskal's and Prim's algorithms 	Chapter 21	
	Lecture 2: Written Homework #3 Discussion (preparation of Final Exam)	Written homework #3 handout	
Week 17	Final Exam: 5-7 PM on Tuesday (5/03)		Final exam is a comprehensive exam including all topics for the entire semester

Grades and Grading Policies:

Grading:

- Homeworks/Programs: 50%
- Mid-term Exam 1: 15%
- Mid-term Exam 2: 15%
- Final Exam: 20%

Final Grade: You are guaranteed to receive at least the grade as follows (I reserve the right to lower the cutoffs if I feel it is appropriate).

 $\bullet \quad 87 <= A - < 90 <= A < 97 <= A +$

- $77 \le B \le 80 \le B \le 87$
- $67 \le C \le 70 \le C \le 77$
- $57 \le D \le 60 \le D \le 67$
- F < 57

Grading Policy:

- Homeworks will not be accepted late.
- Programming assignments must be submitted electronically to the instructor by 11.00PM of the due date to avoid any penalty. Within one week after the deadline, you can still submit your assignment. However, 20% late submission penalty will be applied. No submission will be accepted after one week past the due date.
- All students should submit correct and complete files to the instructor. Any accidentally wrong or incomplete submission may need to submit again and incur the submission penalty. The points you can get for incorrect programs are as follows.
 - Cannot be compiled or run time error: no points.
 - Wrong answer: Varying from 0% to 80% points depends on the answer.

Academic Honesty:

- Each student must work independently unless specified otherwise.
- Determination of academic dishonesty is at the discretion of the instructor of the course within the policy guidelines of the University.