
CS 321: Data Structures, Spring 2022

Team Programming Project: Bioinformatics

Due Date: 11:00PM on 5/06/2022 (Friday), 200 points

1 Introduction

In this assignment, we will solve a problem from the field of Bioinformatics using BTrees.
The amount of data that we have to handle is large and any data structure is not likely to
fit in memory. Hence a BTree is a good choice for the data structure.

2 Background

Bioinformatics is the field of science in which biology, computer science, and information
technology merge to form a single discipline. One of the primary aims of Bioinformatics is to
attempt to determine the structure and meaning of the human genome. The human genome
is a complete set of human DNA. The Human Genome project was started in 1990 by the
United States Department of Energy and the U.S. National Institutes of Health. By April
14, 2003 99% of the Human Genome had been sequenced with 99.9% accuracy.

The Human Genome is a big strand of 4 different organic chemicals, known as bases, which
are:

Adenine, Cytosine, Thiamine, Guanine

Biologists often call them A, C, T, G for short. The bases A and T are always paired
together. Similarly the bases C and G are always paired together. So when we look at
the DNA representation, only one side is listed. For example: the DNA sequence: AATGC
actually represents two sequences: AATGC and its complement TTACG (replace A by T, T
by A, C by G and G by C). Even with only half the bases represented in a DNA sequence,
the human genome is about 2.87 billion characters long! See Figure 1 for a image of the
DNA as well as the chemical structure of the bases.

The primary source for getting the human genome (as well as all other mapped organisms)
is in the National Center for Biotechnology Information (NCBI) website.

http://www.ncbi.nlm.nih.gov/

We will be using the GeneBank files from NCBI. The format is described with a sample file
at the following web link:

http://www.ncbi.nlm.nih.gov/Sitemap/samplerecord.html

Most of the information in a GeneBank file is of interest to biologists. We will only be



Figure 1: Physical and Chemical Structure of DNA

interested in the actual DNA sequences that are embedded in these files rather than in the
intervening annotations.

3 Specifications

3.1 Input Files

The GeneBank files have a bunch of annotations followed by the keyword ORIGIN. The DNA
sequences start from the next line. Each line has 60 characters (one of A, T, C, G, could
be lower/upper case) until the end of sequence, which is denoted by // on a line by itself.
Sometimes you will see the character N, which denotes that the sequence is not known at
that character. You would skip these characters. One GeneBank file may have several DNA
sequences in it, each marked by ORIGIN and // tags.

When we reach a character N, we assume that the subsequence has ended. Similarly, when
we reach //, we also assume that the subsequence has ended. So at those points, we reset
the subsequence that we were building and start over when we find the next ORIGIN or the
next valid character after seeing a N.

Some sample genome files (.gbk) can be found at:

2



/home/JHyeh/cs321/labs/lab4/BTree/data/*.gbk

You may simply copy these files to your directory.

3.2 Problem

For a given GeneBank file, we want to convert it into a BTree with each object being a
DNA sequence of specified length k (where 1 ≤ k ≤ 31). We will take the DNA sequence
from the GeneBank file and break it into sequences of length k each. We are interested in
all subsequences with length k. For example, in the sequence AATTCG, the subsequences
of length three are: AAT, ATT, TTC and TCG. Once we have a BTree for a length k, we
want to be able to search for query sequences of length k. The search returns the frequency
of occurrence of the query string (which can be zero if it is not found).

The biological motivation behind is to study the frequency of different length subsequences
to see if they are random or that some sequences are more likely to be found in the DNA.

4 Design Issues

Saving memory. Since we only have four possible bases (A, C, G and T), we can optimize
on space by converting our DNA strings to base 4 numbers. Then we can represent each
base by a 2-bit binary number, as shown below:

A 00
T 11
C 01
G 10

Note that we have made the binary representations for complementary bases be binary
complements as well. With this compact representation, we can store a 31 length sequence
in a 64-bit long primitive type in Java.

Key Values. Note that the binary compact representation of the subsequences will result
in a unique 64-bit integer value. Hence we can directly use that as our key value.

Class Design. We will need a BTree class as well as a BTreeNode class. The objects that
we store in the BTree will be similar to the objects we stored in the previous Hashtable
assignment. You may call the relevant class TreeObject to represent the objects.

4.1 Implementation

You will have two programs: one that creates a BTree from a given GeneBank file and another
for searching in the specified BTree for sequences of given length. The search program

3



assumes that the user specified the proper BTree to use depending upon the query length.

• The main Java classes should be named GeneBankCreateBTree and GeneBankSearch.

The required arguments for the two programs are shown below.

java GeneBankCreateBTree <0/1(no/with Cache)> <degree> <gbk file> <sequence length>

[<cache size>] [<debug level>]

java GeneBankSearch <0/1(no/with Cache)> <btree file> <query file> [<cache size>]

[<debug level>]

The degree is the degree to be used for the BTree. If the user specifies 0, then your
program should choose the optimum degree based on a disk block size of 4096 bytes
and the size of your BTree node on disk.

The sequence length is an integer that must be between 1 and 31 (inclusive). The
query file contains all the DNA strings of a specific sequence length that we want to
search for in the specified btree file. The strings are one per line and they all must
have the same length as the DNA sequences in the btree file. The DNA strings use a,
c, t, and g (either lower or upper case).

The debug level is an optional argument with a default value of zero. It must at least
support the following levels for GeneBankCreateBTree:

0 Any diagnostic messages, help and status messages must be be printed on standard
error stream.

1 The program writes a text file named dump, that has the following line format:
DNA string: frequency. The dump file contains DNA string (corresponding to
the key stored) and frequency in an inorder traversal. You can find a dump file
test3.gbk.btree.dump.6 in the directory

/home/JHyeh/cs321/labs/lab4/BTree/files/

which was produced by running GeneBankCreateBTree, using test3.gbk as input
with sequence length k = 6 and with any degree t. Please make sure your dump file
has the same format as the one provided so that you can use the linux command
diff to check the correctness of your dump file.

The debug level for GeneBankSearch must at least support the following.

0 The output of the queries should be printed on the standard output stream. A sam-
ple GeneBankSearch output test3 query7 result can be found in the directory

/home/JHyeh/cs321/labs/lab4/BTree/files/

• Your program should always keep the root node in the memory. Write the root node to
disk file only at the end of the program and read it in when the program starts up. In
addition, your program can only hold a few nodes in memory (that is, declare a few
BTreeNode variables, including the root, in your program).

4



• Metadata storage. We need to store some metadata about the BTree on disk. For
example, we can store the degree of the tree, the byte offset of the root node (so we
can find it), the number of nodes etc. This information could be stored in separate
metadata file or it can be stored at the beginning of the BTree file.

• The B-Tree should be stored as a binary data file on the disk (and not as a text file). If
the name of the GeneBank file is xyz.gbk, the sequence length is k, the BTree degree
is t, then the name of the btree file should be xyz.gbk.btree.data.k.t.

• You need to turn in a README file that describes the layout of the B-Tree file on
disk as well as any other relevant observations.

• Sample query files are available in the directory:

/home/JHyeh/cs321/labs/lab4/BTree/queries/

That directory also contains a sample program named QueryGenerator.java that
generates random queries for testing.

• Running Tests. Please be sensitive to other students when you run large tests on
your assignments. Preferably, run all your tests at home. If you do need to run them
in the lab, please do not run them on onyx. Instead run them on one the workstations.
If you are log in to onyx remotely via ssh, then ssh into a idle workstation to run
your tests. You can check if anyone is on a workstation with the command who. You
can also check the load on the system with the command top. The workstations are
named onyxnode01 through onyxnode144. Below is a list of the node numbers that
will be available this semester.
01, 03, 05, 06, 08, 10, 11, 14, 15, 16, 18, 20, 21, 23, 25, 26, 29, 30, 33, 34, 36, 38, 41,
42, 45, 46, 47, 48, 51, 52, 53, 55, 56, 57, 58, 59, 61, 62, 63, 64, 67, 68, 69,70, 71, 72, 74,
75, 76, 78, 79, 80, 82, 84, 87, 88, 90, 92, 95, 97, 99, 101, 103, 105, 107, 109, 111, 112,
144

5 Using a Cache (20 points)

• Incorporate the Object Cache from the earlier assignment to improve the performance
of your Btree implementation. The size of the Cache should be a command line argu-
ment. An entry in the Cache is a Btree node. With the Cache option, the cache size
needs to be specified as a command-line argument.

java GeneBankCreateBTree <0/1(no/with Cache)> <degree> <gbk file> <sequence length>

[<cache size>] [<debug level>]

java GeneBankSearch <0/1(no/with Cache)> <btree file> <query file> [<cache size>]

[<debug level>]

• Report the improvement in time using a cache of size 100 and 500 in your README
file.

5



6 Agile Development

You have already taken CS-HU 271 and you should have a good knowledge of the GitHub
Repository. For Agile development of this project, please check the github repository below.
The repository has the detailed information and instructions.

http://github.com/BoiseState/CS321 Bioinformatics
(don’t click on the link, but cut-and-paste the above link to your browser)

Each team needs to create a team GitHub repository and adds the TA as a collaborator (TA’s
GitHub username: jthomporter). Please name your repository as CS321-section-semester-
team-## (for example, CS321-001-s22-team-05).

7 Using a Database to store and search the results

Design a simple database to store the results (sequences and frequencies) from the B-Tree.
We will perform an inorder tree traversal to get the information to store in the database.
This would be done at the end of creating the GeneBankBTree. Then we will create a
separate search program named GeneBankSearchDatabase that uses the database instead
of the B-Tree.

The detailed instruction can be found in the repository

http://github.com/BoiseState/CS321 Bioinformatics

8 Submission

Please ignore the submission instruction in the agile development repository.

You need to submit the final project through onyx. Make a separate directory for the
assignment in onyx. Make sure that your assignment directory is cleaned out (no class files,
no large output or input files, but symbolic links to my input files are okay to leave). Before
submission, you need to make sure that your program can be compiled and run in onyx.
Submit your program(s) from the assignment directory (with no subdirectories) in onyx

and typing the following FROM WITHIN this directory:

submit jhyeh cs321 p4

NOTE: only one submission from each team.

6



9 Progress Reports

Each team member is responsible for sending me, via email (please ignore the progress
report instruction in the repository), a short progress report each week. To clarify:

one progress report, per week, per member

A progress report should describe your project-related activities for the week, including the
URL to the tasks completed that week by you. It is expected that each team should have
at least one meeting every week. You can (and should, if necessary) complain about your
teammates, and I’ll take their behavior into consideration. Progress reports are confidential.

7


