CS 321 Data Structures (Spring 2022)
Programming Assignment #3, Due on 3/18/2022, Friday (11PM)

e Introduction:

Suppose we are inserting n keys into a hash table of size m. Then the load factor «
is defined to be n/m. For open addressing n < m, which implies that 0 < o < 1. In
this assignment we will study how the load factor affects the average number of probes
required by open addressing while using linear probing and double hashing.

e Design:

Set up the hash table to be an array of HashObject. A HashObject contains a generic
object, a duplicate count and a probe count. The HashObject needs to override both
the equals and the toString methods and should also have a getKey method.

Also we will use linear probing as well as double hashing. So design the HashTable
class by passing in an indicator via constructor so that the appropriate kind of probing
will be performed.

Find a value of the table size m to be a prime in the range [95500...96000]. A good
value is to use a prime that is 2 away from another prime. That is, both m and m — 2
are primes. Two primes (differ by two) are called “twin primes”. Please find the table
size using the smallest twin primes in the given grange [95500...96000]. Vary the load
factor o as 0.5, 0.6, 0.7, 0.8, 0.9, 0.95, 0.98, 0.99 by setting the value of n appropriately,
that is, n = am. Keep track of the average number of probes required for each value
of « for linear probing and for double hashing.

For the double hashing, the primary hash function is hy(k) = k£ mod m and the sec-
ondary hash function is he(k) = 1 + (k mod (m — 2)).

To test whether a number p is a prime, the following method should be used:

if a?~! mod p # 1, then p is not a prime

if >~ mod p =1, then p is most likely a prime with
a false positive chance of 1

where a is a random integer with 1 < a < p. To increase the certainty of the test,
please perform the test twice using different random numbers. In this assignment, you
should use the square-and-multiply technique to implment the above primality test.
The square-and-multiply technique is discussed in class.

There are three sources of data for this experiment as described in the next section.

Note that the data can contain duplicates. If a duplicate is detected, then update the
frequency for the object rather than inserting it again. Keep inserting elements until
you have reached the desired load factor. Count the number of probes only for new
insertions and not when you found a duplicate.

e Experiment:

For the experiment we will consider three different sources of data as follows. You will
need to insert HashObjects until the pre-specified « is reached, where

— Data Source 1: each HashObject contains an Integer object with a random int
value generated by the method nextInt() in java.util.Random class. The key
for each such HashObject is the Integer object inside.

— Data Source 2: each HashObject contains a Long object with a long value gen-
erated by the method System.currentTimeMillis(). The key for each such
HashObject is the Long object inside.

— Data Source 3: each HashObject contains a word from the file word-1ist in the
directory
/home/JHyeh/cs321/1labs/1lab3/files
The file contains 3,037,798 words (one per line) out of which 101,233 are unique.
The key for each such HashObject is the word inside.

Note that, for fair comparison, the data inserted into both linear and double tables must
be the same.

When you hash a HashObject into a table index, you will need to

— Compute the hashCode () of the key of the HashObject.

— Use the hashCode () to perform the linear probing or double hashing calculation.
Note that hashCode () can return negative integers. You need to ensure the mod
operation in the probing calculation always returns positive integers. For example,
the computation of the primary hash value (i.e., hi(key)) and the secondary hash
value (i.e., ha(key)) should be

hi(key) = PositiveMod (key.hashCode(), tablesize);
h2 (key) 1 + PositiveMod (key.hashCode(), tablesize-2);

where

public int PositiveMod (int dividend, int divisor)

{
int value = dividend % divisor;
if (value < 0)
value += divisor;
return value;
}

Note that two different objects (key objects) may have the same hashCode() value,
though the probability is small. Thus, you must compare the actual key objects to
check if the HashObject to be inserted is a duplicate.

Don’t copy the word-1list file to your directory since its is large. Instead set up a
symbolic link as follows:
1n -s /home/JHyeh/cs321/labs/lab3/files/word-list

Required file/class names and output:

The source code for the project. The driver program should be named as HashTest,
it should have three (the third one is optional) command-line arguments as follows:

java HashTest <input type> <load factor> [<debug level>]

The <input type> should be 1, 2, or 3 depending on whether the data is generated
using java.util.Random, System.currentTimeMillis() or from the file word-list.
The program should print out the input source type, total number of keys inserted into
the hash table and the average number of probes required for linear probing and double
hashing. The optional argument specifies a debug level with the following meaning:

— debug = 0 — print summary of experiment on the console

— debug = 1 — print summary of experiment on the console and also print the hash
tables with number of duplicates and number of probes into two files 1inear-dump
and double-dump. The two sample dump files generated by executing

[jhyeh@onyx sol]$ java HashTest 3 0.5 1

are given in the following directory
/home/JHyeh/cs321/1labs/1lab3/files/linear-dump and
/home/JHyeh/cs321/1labs/1lab3/files/double-dump

Please make sure your dump files have the same format as the provided sample

dump files so that you can use linux command diff to compare them for correct-
ness checking.

For debug level of 0, the output to the console is a summary. An example is shown
below.

[jhyeh@onyx sol]$ java HashTest 3 0.5
A good table size is found: 95791
Data source type: word-list

Using Linear Hashing....
Input 1305930 elements, of which 1258034 duplicates
load factor = 0.5, Avg. no. of probes 1.5969183230332387

Using Double Hashing....
Input 1305930 elements, of which 1258034 duplicates
load factor = 0.5, Avg. no. of probes 1.3904918991147486

e Submission

A readme file that contains tables showing the average number of probes versus load
factors. There should be three tables for the three different sources of data. Each
table should have eight rows (for different) and two columns (for linear probing and
double hashing). A sample result containing three tables can be seen in the file below

/home/JHyeh/cs321/1labs/lab3/files/sample result.txt
Please do not submit executable since I'll be recompiling your programs.

Before submission, you need to make sure that your program can be compiled and
run in onyx. Submit your program(s) from onyx by copying all of your files to an
empty directory (with no subdirectories) and typing the following FROM WITHIN
this directory:

submit jhyeh cs321 p3

