
CS 321 Data Structures (Spring 2022)

Programming Assignment #1 (60 points), Due on 1/20/2022, Thursday (11:00 PM)

Introduction:
This programming assignment asks you to design a cache implementation using linked list data
structure. That is, write a Cache class having at least the following public methods – constructor,
getObject, addObject, removeObject, clearCache and some others. The data to be stored in cache
should be generic objects. Also, write a test program to test your cache implementation.

Description:
A cache is a storage in memory. If a data item has a copy in cache, application can read this data
item from cache directly. The usage of cache is as follows. Whenever an application requires a data
item, it searches the cache first. If it is a cache hit, then the cache returns the data item to the
application and the data item will be move to the first position in the cache (we call it the Most
Recently Used MRU scheme). On the other hand, if it is a cache miss, then the application needs
to read the data item from disk and then the data item from disk will be added to the first position
of the cache. Note that if the cache is full, the last entry (oldest one) in the cache will be removed
before a new entry can be added.

Similarly, whenever an application writes a data item to disk, the system will perform the same
write operation to the cache copy of the data item (if any) and then move it to the first position
in cache. Note that the write operation is equivalent to a remove operation followed by an add

operation.

One-level Cache:
A single-level cache and it works as described above.

Two-level Cache:
A 2nd-level cache sits behind the 1st-level cache. Usually, the 2nd-level cache is much bigger than
the 1st-level cache. Assume the 2nd-level cache contains all data in the 1st level cache, which is
called (multilevel inclusion property). Two-level cache works as follows:

Search cache1;

Increment the # of cache1 references;

if cache1 hits

then Increment the # of cache1 hits;

Move the hit data item to the top of both cache.

else Search cache2;

Increment the # of cache2 references;

if cache2 hits

then Increment the # of cache2 hits;

Move the hit data item to the top of cache2;

Add the data item to the top of cache1;

else Add the data item to the top of both cache;

Hit Ratio:
Some terms used to define hit ratio are:
HR1: 1st-level cache hit ratio
HR2: 2nd-level cache hit ratio



HR: (global) cache hit ratio

NH1: number of 1st-level cache hits
NH2: number of 2nd-level cache hits
NH: total number of cache hits (= NH1 + NH2, in case of two-level cache simulation)

NR1: number of references to 1st-level cache
NR2: number of references to 2nd-level cache (= number of 1st-level cache misses)
NR: total references to cache (= NR1, in case of two-level cache simulation)

• One-level cache: HR = NH
NR

• Two-level cache: HR1 = NH1
NR1

HR2 = NH2
NR2

HR = NH
NR = NH1+NH2

NR1

What you need to do:

1. Create a directory ∼/cs321/lab1 for this assignment.

2. Write a Cache class.

3. Execute the following command (assuming you are in the directory ∼/cs321/lab1) to make a
link to the text file. Don’t copy this file as it is quite large!

ln -s /home/JHyeh/cs321/labs/lab1/files/Encyclopedia.txt

4. Write a test program Test.java. It’s usage should be

java Test 1 <cache size> <input textfile name> or
java Test 2 <1st-level cache size> <2nd-level cache size> <input textfile name>

The cache size(s) and the text file should be input as command line arguments. Your program
should create a cache (option 1) or two cache (option 2) with the specified size(s) and read
in the input text file word by word. For each word, search the cache(s) to see whether there
is a cache hit and update the cache accordingly. I will use the file Encyclopedia.txt and a
small text file small.txt (in the same directory as the Encyclopedia.txt does) to test your
program.

5. Your program should output the cache hit ratio(s) after reading all words from the input text
file. You can find the sample outputs, result1k2k, result1k5k and result.small, in the
directory

/home/JHyeh/cs321/labs/lab1/files/

6. Measure the elapsed time (in Milli-seconds) to run your program

java Test 2 1000 2000 Encyclopedia.txt

and report the time required in a README file. You can call the method
System.currentTimeMillis() to measure the time.

Submission:

Submit your program(s) from onyx by copying all of your files to an empty directory (with no
subdirectories) and typing the following FROM WITHIN this directory:

submit jhyeh cs321 p1


