
Testing and Github
B-Tree-Insert and B-Tree-Insert-Nonfull from the textbook:
B-TREE-INSERT(T, k)

1. r = T.root
2. if r.n == 2t-1
3. s = ALLOCATE-NODE()
4. T.root = s
5. s.leaf = false
6. s.n = 0
7. s.c1 = r
8. B-TREE-SPLIT-CHILD(s, 1)
9. B-TREE-INSERT-NONFULL(s, k)
10. else B-TREE-INSERT-NONFULL(r, k)

B-TREE-INSERT-NONFULL(x, k)
1. I = x.n
2. if x.leaf
3. while i >= 1 and k < x.keyi
4. x.keyi+1 = x.keyi
5. i = i – 1
6. x.keyi = k
7. x.n = x.n + 1
8. DISK-WRITE(x)
9. else while i >= 1 and k < x.keyi
10. i = i – 1
11. i = i + 1
12. DISK-READ(x.ci)
13. if x.ci.n == 2t – 1
14. B-TREE-SPLIT-CHILD(x, I)
15. if k > x.keyi
16. i = i + 1
17. B-TREE-INSERT-NONFULL(x.ci, k)

Building Your J-Unit Test Suite:
You can use unit testing to do test-driven development of your B-Tree class

as opposed to strictly testing it with the driver. This will speed up development of
the project as it enables incremental production of the B-Tree insert method, lets
you debug with simpler data sets, and gives some assurance that you have a
working B-Tree class for when you write the driver. A good test suite covering B-
Tree insert should consider simple cases such as just filling the root, and cases
that introduce complexity such as splitting. Here’s a suite you should consider
making:

Test 1:
Recall that a B-Tree Node can hold up to 2t-1 keys where t is the degree of

the B-Tree. Plan a J-Unit test that completely fills the root of a new B-Tree. You will
need to consider following:

• What degree of B-Tree you will be testing? What would be simplest?
• What keys will you add to the B-Tree?
• What parts of B-Tree-Insert and B-TREE-INSERT-NONFULL will you have to

implement to pass this test?
• How many nodes will the B-Tree have after inserting the keys you plan?
• Is the order of the keys correct after inserting?

Test 2:
If you’re passing your J-Unit test for test 1, your B-Tree code should be able

to create a B-Tree with a single node with a full root. Consider the following for
your next test:

• If you add one more key, your B-Tree should split the root. What parts
of B-Tree-Insert and B-Tree-Insert-Nonfull are required to achieve this?

• How do you access a node by its index in the tree? How should you
move about the B-Tree to reach this index?

• How can you store B-Tree-Nodes on disk as opposed to main memory?
Research Java’s ByteBuffer and RandomAccessFile classes and think
about what happens when when ALLOCATE-NODE(), DISK-READ(), and
DISK-WRITE() are called.

Test 3:
Initialize a degree two B-Tree and insert the keys 1, 2, 3, 4, 5 and consider:

• How many nodes will you have?
• What will the contents of each node be?

Add the key 6 to this B-Tree and consider:
• What makes the split that will occur different from the split that

occurred in test 2?
• What parts of B-TREE-INSERT and B-TREE-INSERT-NONFULL must be

implemented?

Test 4:
Take the resulting B-Tree of the previous test and add the keys 7 and 8.

Consider the following:
• What nodes in the B-Tree are full?.
• How many levels does the B-Tree have?

Add the key 9 to this B-Tree and consider:
• Will a split occur and if so, how does it differ then the split in test 2?
• Have we considered all regions at which split could occur?

Test 5:
Take the B-Tree from the previous test and add the keys 10, 11, and 12.

Consider:
• What nodes in the B-Tree are full?.
• How is the full node in this B-Tree different from the full nodes in the

previous tests?
• Add the key 13 and work out how many nodes there are, and what are

the contents of each node?

Once you are passing all five of these J-Unit tests, you can now write the
driver class with some assurance that your B-Tree class works.

GitHub – Getting Feedback on Code From Jonathan:
I will not be able to review everything you add into your GitHub repositories

but I can see if you gave a good implementation of my suggested J-Unit tests,
review code worked out in the book, see if you’re on the right track with
ALLOCATE-NODE(), DISK-READ(), and DISK-WRITE(). The best way you could get
feedback from me is to add me as a reviewer on your pull requests. To do so, I
recommend that everyone in your group works on their own branches, and merge
their contributions into the main branch. While your working on your own branch,
you can pull in your group member’s contributions by rebasing your branch on
main. Here’s an example:

In the following image, I have cloned a new copy of the repository in the
handout and I have created my own branch.

Checkout your new branch with:
$ git checkout <branch name>

In my IDE, I’ve opened the cloned repository , opened the GeneBankCreateBTree
class added a very simple contribution:

Once I save the file, I can commit and push it to GitHub via the terminal:
$ git commit -a -m “added a print statement to driver”
$ git pull –-rebase
$ git push –set-upstream origin <branch name>

Once you call Git push, GitHub will prompt you to make a pull request to merge
your changes into the main branch:

Click compare & pull request. Once you get to this screen:

You can add me as a reviewer on the right and I will be able to look at the changes
you’re trying to merge into main as soon as I can. Be sure to add your other group

members as well, I will not review and approve the pull request unless everyone
in the group is involved. Once the pull request is issued, you can still make
changes to your branch. You will have to issue another pull request after you
commit and push those changes to GitHub if you want them to be in the main
branch. If your group members got pull requests approved from their branch and
the changes were successfully merged into main, you can bring those changes
into your own branch by rebasing:

$ git rebase

Your branch should now be up to date with your group members contributions.

