This is the preprint version. Please see
IEEE for the final official version.

Ensuring Trustworthy Neural Network Training via
Blockchain

1% Edgar Navarro*
Department of Computer Science
San Diego State University
3dgarnavarro@gmail.com

2" Kyle J. Standing*
Department of Computer Science
Brigham Young University
kjstanding2 @ gmail.com

3t Gaby G. Dagher
Department of Computer Science
Boise State University
gabydagher @boisestate.edu

4™ Tim Andersen
Department of Computer Science
Boise State University
tandersen @boisestate.edu

Abstract—As Artificial Intelligence prevalence grows, it high-
lights the risk in relying on compromised models, thereby fueling
a growing need to ensure the integrity of trained AI models.
In this paper, we present a novel blockchain-based system,
designed to authenticate the integrity of trained neural network
models. The system addresses the risk of manipulation of a
model by strategically re-computing intervals of the training
process. Further, the blockchain network provides a traceable,
immutable, trusted ledger for cataloging the intricate processes
of training and validation. We consider two primary entities
involved: ‘submitters’, who submit trained models, and ‘ver-
ifiers’, who re-train distinct sections of the submitted models
to validate their integrity. The design of the blockchain system
emphasizes efficiency by selectively targeting a portion of all
training intervals. This is made possible through the use of an
innovative weight-analysis algorithm, which applies an Absolute
Change approach to identify outliers. We implement our solution
to demonstrate that the proposed blockchain system is robust,
and the weight-analysis algorithm is accurate and scalable.

Index Terms—Blockchain; Machine Learning; Neural Net-
works;

I. INTRODUCTION

Artificial Intelligence (AI) has become an integral part of
our daily lives, influencing various sectors such as business,
science, and education. Among the many branches of Al, deep
learning, which employs large neural networks to perform
complex tasks, has been particularly transformative. However,
as Al continues to evolve and integrate into our society, it
raises critical concerns about the integrity and reliability of
Al models.

The motivation for our work stems from the increasing
reliance on Al systems and the potential risks associated with
compromised models. The process of designing and training
Al models is complex and computationally intensive. It often
requires expensive, specialized hardware and a significant
amount of time. As the complexity and resource requirements
of models increase, many researchers and developers are
opting to delegate the training process to third parties. While
this approach alleviates the computational burden, it introduces
a new challenge: trust.

*These authors contributed equally.

There are two main factors that can affect the integrity of
a third-party trained model. The first of which is whether the
requested training was actually completed, and the second that
the model was not manipulated or “poisoned”. A poisoned
model is one that has been manipulated to behave in unin-
tended ways, typically through the introduction of manipulated
data during training. While these are of particular concern
when dealing with a third-party trained model, the threat is
present in many other related fields.

In this paper we focus on the challenge of verifying the
integrity of neural network models, which are a subset of Al
Neural nets pose a unique hurdle such that without a clear
understanding of the training process, it is difficult to derive
any information about the training that the model underwent.
Further, it is infeasible to determine whether a model has been
poisoned based solely off the model itself. This is known as
the “black-box” nature of neural network models, making it
nearly impossible to understand the inner workings of a model
or how it arrives at a particular outcome.

Addressing these challenges is crucial for the continued
growth and acceptance of Al technologies. Ensuring the in-
tegrity of trained neural network models is not just about
maintaining the accuracy of predictions, but also about fos-
tering trust in neural network systems. This is particularly
important as neural nets and other deep learning technology
continues to be integrated into critical areas such as healthcare,
finance, and autonomous vehicles, where the consequences of
a compromised model could be severe.

Current strategies for validating the integrity of neural
network models are often constrained by their detection scope
and a requirement of understanding of how a model might
be compromised. These methods are typically designed to
identify a specific type of poisoning or compromise, thereby
limiting their effectiveness when faced with a diverse range
of potential threats to a model’s integrity. Moreover, these
approaches often necessitate the user to possess some level of
knowledge about the model’s training process. This require-
ment presents a significant challenge, as it may not always
be feasible or possible to obtain detailed information about


GABYDAGHER
Text Box
This is the preprint version. Please see 
IEEE for the final official version.


a model’s training, particularly when dealing with third-party
models or models trained on proprietary or confidential data.

In response to these challenges and concerns, we propose
a novel method of model validation using blockchain tech-
nology. Our solution efficiently validates the integrity of a
model without any prior knowledge of potential poisoning
methods. It not only detects whether a model has been poi-
soned but also ensures that the model was trained as specified.
Furthermore, our solution provides an immutable record of
a model’s evolution, enabling comprehensive analysis of any
model validated on the network. This approach paves the way
for a system of trusted Al models, fostering greater confidence
in Al technology.

A. Contributions

This paper presents several significant contributions to the
field of neural network model verification and blockchain
technology:

o Blockchain Network for Model Verification: We pro-
pose a blockchain network specifically designed for the
task of efficient verification of the integrity of neural
network models. This network utilizes the distributed
nature of blockchain technology, allowing many inde-
pendent nodes to participate in the verification process.
This collaborative approach also leverages the inherent
transparency and immutability of blockchain technology
to provide a robust and reliable platform for model
verification.

o Weight-Analysis Algorithm: We introduce a novel
weight-analysis algorithm that intelligently distributes re-
computation tasks across the network. This algorithm is
designed to optimize the verification process, balancing
computational efficiency with effective model validation.

o Comprehensive Implementation and Testing: We de-
veloped a comprehensive implementation of our proposed
blockchain network and weight-analysis algorithm. Fur-
thermore, we conduct extensive experiments to rigorously
test the system’s capabilities. Our experimental results
demonstrate that the proposed blockchain system is ro-
bust in the presence of malicious actors, and that our
weight-analysis algorithm performs with high accuracy in
detecting outlying training intervals and is scalable w.r.t.
model complexity.

II. RELATED WORK
A. Blockchain for Al

Blockchain technologies have emerged as an innovative
solution to enable decentralized trust and ensure account-
ability and transparency in neural network model sharing.
Several works of research have been done in this area, which
demonstrate various applications and implications of using
blockchain in the context of machine learning and artificial
intelligence.

Research done by Bore et al. introduced a blockchain-
enabled system to establish decentralized trust in machine
learning and computational simulations. This system leverages

blockchain to store, share, and maintain auditable logs and
records of each step involved in a modeling process. The
system also monitors worker outputs, and can rank and identify
faulty workers to ensure the quality of models [4]. Similarly,
Sarpatwar et al. described the use of blockchain for tracking
the provenance of training models in artificial intelligence [1].
This approach could enable end-users to trust the received Al
models by providing them with information about how the
model was trained and the data it was trained on. Such a
mechanism can potentially lead to better trusted Al.

Raman et al. introduced a framework for distributed trust
in computations, which employs a novel combination of
distributed validation of atomic computation blocks and a
blockchain-based immutable audit mechanism [3]. This ap-
proach addresses the scalability problem by reducing the
storage and communication costs using a lossy compression
scheme. It also ensures the verifiability of the final results
and the validity of local computations. In a slightly different
approach, Baldominos et al. proposed Coin.Al [2], a proof-of-
useful-work scheme for a blockchain-based distributed deep
learning system. In this system, mining requires the training
of deep learning models, and a block is only mined when the
model’s performance exceeds a certain threshold. This mech-
anism not only verifies the accuracy of the delivered models
in an efficient way, but also promotes useful computation as
a core feature of the blockchain system.

These systems underscore the potential of blockchain tech-
nology in enhancing the transparency, traceability, and re-
liability of shared machine learning models. However, they
do not directly address the issue of model poisoning. While
Raman et al. indirectly address the issue, a comprehensive
solution that specifically targets model poisoning is absent.
This gap can be attributed to the inherent complexity associ-
ated with identifying poisoned models. Our work fills this gap
by proposing a blockchain network specifically designed for
efficient verification of neural network models integrity.

B. Consensus algorithms

The consensus mechanism is a critical component of
blockchain technology, serving as the protocol by which
agreement is reached among the decentralized nodes in the
network. It ensures the security, integrity, and robustness of
the system, making it a compelling area of research. This
section reviews the works of various researchers who have
proposed innovative consensus algorithms that leverage ma-
chine learning and computational models. These studies are
particularly relevant to our work as we seek to enhance the
consensus mechanism in our blockchain network for efficient
verification of neural network models.

A. Shoker introduces a novel consensus algorithm, the Proof
of eXercise (PoX) [5], as a more sustainable and less energy-
intensive alternative to the traditional Proof of Work (PoW).
The author proposes that a matrix-based scientific computation
problem could replace the “useless” computations in PoW,
providing a more rational and efficient approach to consensus.
This new paradigm, however, faces challenges as the “work”



Work Poison Detection | Model Provenance | Training Validation | Storage Blockchain Type
Sarpatwar et al. [1] No Yes No No Public
Baldominos et al. [2] No No No Yes Public
Raman et al. [3] Yes Yes No No Private
Bore et al. [4] No Yes No Yes Private
[ Our Work [ Yes [ Yes [ Yes [ No [ Private |

Table I: Comparison of our work with related works in the areas of: Poison Detection, Model Provenance, Training Validation
(checking training for poisoning or lack of completion), Storage, and Blockchain Type.

remains far from being really “useful”. The concept of Proof
of Learning (PoL) was first proposed by Bravo-Marquez et al.
as part of the WekaCoin project [6]. In this model, consensus
is achieved by ranking machine learning systems for a given
task. Unlike the hashing-based puzzles in PoW, this approach
strives to create a public distributed and verifiable database
of state-of-the-art machine learning models and experiments,
thereby adding value to the computations involved. Liu et al.
further develop the concept of PoL in their work, “Proof of
Learning (PoLe): Empowering neural network training with
consensus building on blockchains” [7]. They propose a new
consensus mechanism that directs the computation spent for
block consensus towards the optimization of neural networks.
Their design involves the entire blockchain network’s access
to training and testing data, with the training of neural network
models serving as proof of learning. This design includes
a secure mapping layer (SML) to prevent consensus nodes
from cheating. The authors claim that the PoLe protocol
results in a more stable block generation rate, leading to
more efficient transaction processing, without significantly
sacrificing training performance.

Lihu et al. developed a Proof of Useful Work (PoUW)
protocol [8], which is a novel consensus mechanism based
on training machine learning models. Their approach reduces
the resource-intensive process typical of Bitcoin mining and
instead focuses on performing useful machine learning training
work, thereby rewarding miners for their contributions to
the network. This work presents an interesting model for
blockchain-based systems that aspire to not just solve puzzles
but to contribute towards meaningful work. Shafay et al.
provided an insightful review of this subject [9]. The authors
classify and categorize related literature by devising a thematic
taxonomy based on parameters such as blockchain type, deep
learning models, deep learning specific consensus protocols,
application area, services, data types, and deployment goals.
They argue that integrating blockchain technology with deep
learning could offer operational transparency, traceability, re-
liability, security, and trusted data provenance, addressing the
shortcomings of centralized deep learning systems.

In summary, the adoption of alternative consensus mecha-
nisms in blockchain technologies has the potential to greatly
enhance their efficiency and applicability. The consensus algo-
rithms based on learning and useful work, such as PoX, PoL,
PoLe, and PoUW, represent promising directions for future
work.

C. Poisoned Model Detection

Poisoned model detection is a crucial task in ensuring
the correct functioning of a trained neural network. The
identification of whether a model has been trained maliciously
is not a straightforward task due to the “black box” nature of
many machine learning models. Below are some significant
works that have made advancements in this area.

Gao et al. proposed an approach named STRIP (STRong
Intentional Perturbation) to combat trojan attacks on deep
neural networks [10]. Trojan attacks leverage the difficulty in
interpreting a learned model to misclassify any inputs signed
with a secret trojan trigger. STRIP works by intentionally
perturbing incoming inputs, such as by superimposing various
image patterns, and observing the randomness of predicted
classes for these perturbed inputs. If the predictions demon-
strate low entropy, violating the input-dependence property
of a benign model, it suggests the presence of a malicious
input, a characteristic of a trojaned input. To improve trojan
backdoor detection in artificial intelligence systems, Guo et
al. introduced an approach called TABOR [11]. Backdoor
trojans are hidden patterns within a deep neural network
(DNN) that force the model to behave abnormally when
triggered. Existing detection techniques require an assumption
of availability of the contaminated training database, which
might not be practical. TABOR formulates trojan detection as
an optimization problem, guided by explainable Al techniques
and heuristics. It also uses an anomaly detection method to
better identify intentionally injected triggers in the infected
model and filter out false alarms.

Amarnath et al. presented a method called TESDA (Trans-
form Enabled Statistical Detection of Attacks) for online
detection of attacks on deep neural networks [12]. TESDA
exploits the discrepancies caused by attacks in the distributions
of intermediate layer features of DNNs. The method does
not require dedicated hardware to run in real-time, nor the
presence of a Trojan trigger to detect discrepancies in behavior.
It has been shown to achieve detection coverages of above 95%
with low overheads.

These methods highlight the importance and ongoing devel-
opment in detecting and defending against poisoned or trojan-
infected neural networks. The success of these methods also
paves the way for more sophisticated techniques in ensuring
the integrity of machine learning models. However, most of
these algorithms require heavy computations or knowledge
of how a neural network model may have poisoned. When
working in a distributed blockchain system these are key points



of interest to address. Our poisoned model detection algorithm
is efficient enough to work seamlessly on a blockchain network
and makes no assumptions on the training process.

III. BACKGROUND

The integrity of a machine learning model is crucial for
its reliable operation. However, it can be compromised in
several ways, one of which is model poisoning [13, 14]. Model
poisoning involves the intentional introduction of misleading
data into the training set, causing the model to make incorrect
predictions. These attacks can lead to biased predictions or
even complete failure of the model, making them a significant
threat to the reliability of machine learning systems [15].

Deep learning models, particularly those based on neural
networks, are often referred to as “black boxes” because their
internal workings are not fully understood [16, 17]. This lack
of transparency makes it difficult to verify the integrity of these
models and to understand how they arrive at their decisions.
We use the knowledge of how neural networks work and
their individual components to obtain a measure of the models
integrity [18].

We introduce an important component of neural networks,
the individual neurons. Neurons in a neural network are
designed to mimic the function of biological neurons. These
neurons receive a number of inputs which are individually
weighted, with the weight vector within the neuron. They are
then summed and passed through an activation function that
leads to the following neurons [19, 20].

Weights and biases are a set of parameters within the model
that transform input data within the network’s hidden layers.
As an input enters the network, it is multiplied by a weight
value and added to a bias before being passed onto a neuron
in the next layer. The neuron sums all the inputs it receives,
and if the sum surpasses a certain threshold, the neuron is
activated and sends data to the next layer. The initial values
of these weights and biases are typically set randomly and are
adjusted during the training process [20]. The goal of training
a neural network is to adjust these weights and biases in such
a way that the error between the model’s predictions and the
actual output is minimized. This is done through a process
called backpropagation, where the model learns from its errors
by propagating the error backwards through the network,
adjusting the weights and biases as it goes [21, 22, 23].

The depth of these networks is what enables them to learn
from data and perform complex tasks, but it also contributes
to their complexity and the computational resources required
to train them [24].

Weight analysis can be used to identify abnormalities or
signs of model poisoning [20]. If a model has been poisoned,
the weights associated with the poisoned data may show
unusual patterns compared to the rest of the weights [23].

Blockchain technology is a decentralized and distributed
digital ledger that records transactions across multiple com-
puters in such a way that the registered transactions cannot be
altered retroactively [25]. This technology is designed to bring
security, transparency, and efficiency to the exchange of digital

assets. It works by grouping transactions into blocks, which
are then linked together in a chain. Each block is secured using
cryptographic techniques, and a consensus mechanism ensures
that all transactions are agreed upon by the network.

One such consensus mechanism is quorum consensus
[26]. The key differentiator in quorum consensus from other
blockchain solutions is that it allows for transactions to be
processed quickly and efficiently, making it suitable for use
in a production environment. Quorum consensus achieves
consensus through two mechanisms: QuorumChain, which is a
voting-based mechanism, and Raft-based consensus, which is
a majority-based mechanism. This flexibility allows quorum
consensus to be used in a variety of different applications,
including those that require high speed and high throughput.

In the context of model validation, blockchain technology
can provide a secure and transparent way to record and
verify the training process of a machine learning model [9].
Each transaction in this case could represent an update or
change to the model, such as an adjustment of weights during
training. This creates an immutable record of the model’s
training process. For example, if a model is trained over a
distributed network, each update to the model’s parameters
could be recorded as a transaction on the blockchain. This
would allow anyone to verify the entire training process, step
by step. It can provide valuable insights into how the model
was trained and can help identify any abnormalities or signs of
model poisoning. Moreover, because the blockchain network is
decentralized, it can be verified by anyone in the network. This
means that third parties can independently verify the integrity
of the model without needing to trust the entity that trained
the model. This feature is particularly useful when the training
process is outsourced to a third party[27, 28].

IV. SOLUTION: Diffusion
A. Solution Overview

This research encapsulates the steps towards creating a
blockchain system that is expressly designed to authenticate
the integrity of comprehensively trained neural network mod-
els. The purpose of this system is to function as a traceable,
non-alterable, and a trusted ledger for cataloging the intri-
cate processes of training and validation of these advanced
neural network models. The primary concern addressed is
the potential risk of the introduction of ’poisoned’ data or
adversarial manipulation during the training phase of a model.
The proposed blockchain system serves to verify the safety and
integrity of these models, thereby negating this concern and
enhancing trust in model reliability.

The system involves two primary entities: submitters, who
provide trained models with a detailed training provenance,
and verifiers, who re-train distinct sections of the submitted
models to validate their integrity. The blockchain system’s
design emphasizes balance between computational power and
responsibility, selectively targeting specific training iterations
for retraining instead of the whole model, ensuring computa-
tional efficiency.



Upon model submission, the submitter is required to provide
snapshots of the model as it progressed through intervals of
training. These snapshots represent the model in its entirety
and capture the changes the model underwent during each
iteration. The intervals are to be created so that each iteration
of training between snapshots are relatively equal to each
other.

Once all relevant information is made available to the net-
work, an algorithm is run to delegate particular intervals to be
recomputed by the verifiers. This process involves retraining
the interval, a comparison of resulting models, and a report of
any differences. Any difference between a submitted interval
and the retrained interval indicates a breach of integrity.

To detect anomalies in the model, an algorithm based on
four approaches is used: Absolute Change, Euclidean distance
(L2 norm), Percent Change, and Cosines distance. The Abso-
lute Change and L2 norm methods perform best in detecting
potential poisoning attacks. However, the best algorithm can
vary depending on the application.

B. Blockchain System

o L N B T PO T
(1 1 1 [ 1 " |

@ M MZV\(3/)\/| Ma M5V\/\/| Mz MB\/\/\J
Ms Ms Ms

Figure 1: System Diagram illustrating the interaction between
submitters and verifiers in the proposed blockchain system.
The diagram shows the process from model submission (1),
through intelligent selection of training intervals for retraining
(3), to the multi-layered verification process (2).

The proposed blockchain system in this research consists
of two primary entities: submitters and verifiers. Submitters
are entities, either individuals or organizations, that contribute
trained models to the system, accompanied by their detailed
training provenance. This provenance acts as a testament
to the safety and integrity of the model, ascertaining that
no detrimental or adversarial data manipulation transpired
during the training process. Contrastingly, verifiers operate as
a consensus quorum. Their function involves the re-training
of distinct sections of the submitted neural network models to
authenticate their integrity and cross-verify the results against
the data supplied by the submitters.

The architecture of the blockchain system is specifically
designed to ensure a balance between responsibility and com-
putational power. To enhance computational efficiency and
curtail the extensive resource requirements inherent in compre-
hensive model retraining, an intelligent selection procedure is
integrated. This procedure targets specific training intervals for
retraining, thus circumventing the need for a complete model
retraining procedure. The consensus algorithm that forms an

Method Precision Recall F1-Score
Absolute Change 0.86 1.0 0.92
L2 Norm Difference 0.80 0.67 0.73
Percent Change 0.75 1.0 0.86
Cosine Distance 0.11 0.17 0.13

Table II: Performance metrics for different methods of analyz-
ing changes in neural network weights.

important part of this system is meticulously designed to strike
a balance between computational efficiency and robustness.

Upon submission of a model and its associated training
provenance for verification, the consensus quorum commences
its operation. It selects discrete training intervals from the
model for retraining. For the efficient execution of this task, the
quorum bifurcates itself into smaller sub-quorums. Each sub-
quorum is then tasked with the independent retraining of an
assigned interval, with the subsequent results compared against
the original model’s data supplied by the Submitter.

This verification mechanism assures robustness. It signifi-
cantly mitigates the risk of false positives or negatives, thereby
guaranteeing the high integrity of models recorded in our
blockchain system. We posit that this comprehensive verifi-
cation process embodies the principles of trust, democratiza-
tion, and computational efficiency, representing a significant
advance in the application of neural networks across diverse
fields, while ensuring reliability and trust in their outputs.

C. Weight-analysis Algorithm

The fundamental basis of our detection algorithm lies in the
principle that a poisoned interval (an iteration of model train-
ing) causes a significant alteration to the learned parameters
of a neural network. This abrupt shift is distinguishable from
the comparatively gradual changes observed during normal
training, and our method exploits this distinction for detecting
poisoned intervals. We took 4 different approaches to inter-
preting the parameters: Absolute Change, Euclidean distance
(12 norm), Percent Change, and Cosine Distance.

1) Absolute Change: This method measures how much
each individual weight has changed, without considering the
direction of the change (increase or decrease). The resulting
value is a cumulative representation of all changes in weights
from one model to another. This can be a useful metric for
identifying intervals where significant changes have occurred,
such as a potential poisoning attack, because large changes in
model weights could indicate a shift in the model’s learning

behavior.

(€0) (2

The absolute change for weights w,’ and w;” of two
consecutive models can be computed as:
Aw = Z ‘wZ@) — wgl)‘ (D
i=1

Where n is the total number of weights in the model.

2) L2 Norm Difference: The L2 norm, also known as
the Euclidean norm, is a mathematical concept that finds
widespread usage in machine learning and data science. At



its core, the L2 norm measures the distance between two
points in a space, and it does so by taking into account all
dimensions of that space. It is mathematically defined as the
square root of the sum of the squared differences between
the individual elements of the vectors. In the context of neural
networks, the L2 norm is often used as a measure of difference
or distance between the parameters (weights and biases) of
two models. When you apply the L2 norm to the difference
between the parameters of two models, you get a single scalar
value that represents the overall difference between the two
models, accounting for all parameters simultaneously. This
makes the L2 norm a useful tool for tracking changes in
models during training or for comparing different models.

The L2 norm difference between the weights wgl) and w
of two consecutive models can be computed as:

(2)

9

n

Aw = [ Y@ — w2 @

i=1

Where n is the total number of weights in the model.

3) Percent Change: This method calculates the percentage
change in weights between two consecutive intervals. This
method is similar to the Absolute Change method but nor-
malizes the change by the magnitude of the weights. It can
be more sensitive to relative changes in model parameters.
However, if the weights of the model are small, even a small
absolute change can result in a large percent change, leading

to potential false positive.

(€] (2)

The percent change for weights w,’ and w;” of two
consecutive models can be computed as:
S [ —u?)

Aw=—= x 100 3)

211 ’w(l)‘

Where n is the total number of weights in the model.

4) Cosine Distance: This method involves the computation
of the cosine of the angle between two weight vectors. We
began by flattening the weights of two consecutive neural
network models, thus converting multi-dimensional tensors
into one-dimensional vectors. Subsequently, we calculated the
cosine distance between these flattened weight vector. This
cosine distance, a scalar value ranging from -1 to 1, signifies
the cosine of the angle between the two weight vectors. A
value closer to 1 indicates a smaller angle and thus a higher
similarity between the two vectors. This method effectively
measures the orientation changes between consecutive models
during the training process. Any significant deviation from
the expected cosine distance may be indicative of a poisoning
attack or other anomalies in the neural network’s training
process.

The cosine distance between the weights w
two consecutive models can be computed as:

()

i

and w§2) of

w1 (@)
Zi:lwi w; (4)

d=1-—
VEm @Ry, w®)?

Here, n is the total number of weights in the model.

D. Theoretical Analysis

Theoretical analysis involves a mathematical or logical
examination of our proposed solution to gain insight into its
effectiveness and potential limitations. For our blockchain-
based system and anomaly detection algorithm, this involves a
thorough analysis of computational complexity, accuracy, and
resource requirements.

Firstly, the computational complexity of our proposed algo-
rithm plays a crucial role in determining its efficiency. Both
the Absolute Change and L2 Norm Difference approaches
have a computational complexity of O(n), where n is the
total number of weights in the model. These methods in-
volve a single pass over all weights, which ensures that the
computational complexity remains linear and manageable even
for larger models. The Percent Change and Cosine Distance
methods also have a computational complexity of O(n),
despite additional mathematical operations, as these do not
significantly affect the overall computational complexity.

As we have noted, the Absolute Change method performed
the best among all the methods we evaluated. This method in-
volves measuring the absolute differences in weights between
two consecutive models. The key advantage of this method is
its simplicity, which makes it computationally efficient. Here
is a formal presentation of its efficiency using big O notation:

Theorem 1. The Absolute Change method has a linear time
complexity, specifically, O(n), where n represents the total
number of weights in the neural network model.

Proof. The Absolute Change method requires iterating over
each weight in the neural network model. For each weight, the
method computes the absolute difference between its values in
two consecutive models. Therefore, if there are n weights in
the model, the algorithm performs n computations.
Assuming that computing an absolute difference can be
done in constant time, the total time complexity of the algo-
rithm is proportional to the number of weights, hence O(n).
The space complexity is also O(n) as we need to store the
values of weights for two consecutive models. O

The Absolute Change method has the advantage of simplic-
ity and computational efficiency. However, it does not take into
account the direction or the relative magnitude of changes in
weights, which may be significant in some applications. This
may limit its effectiveness in detecting subtle or sophisticated
poisoning attacks that cause minor but crucial changes in
weights. In such cases, methods like Percent Change or Cosine
Distance, which consider the direction and relative magnitude
of changes, might be more effective, albeit with increased
computational complexity.

Therefore, while the Absolute Change method’s perfor-
mance is superior in our experiments, it is essential to consider
the specific requirements and constraints of individual appli-
cations when selecting the most suitable detection method.

Accuracy is another crucial factor in evaluating our algo-
rithm. According to our experiments, the Absolute Change



method showed the highest F1-Score, which considers both
precision and recall, making it the most accurate method
among the four. However, the best performing method can
vary depending on the application, the size and complexity of
the neural network, and the nature of the poisoning attack.

The resource requirements of our algorithm, specifically
memory usage, should also be considered. Since our algorithm
only requires information about weights from two consecutive
models during computation, it does not require significant
additional memory overhead. The computational requirements
are also manageable as the processes can be run on the GPUs
available in most modern computer systems.

Furthermore, the system design ensures that the compu-
tational load of model verification is distributed across the
network of verifiers. This design principle significantly reduces
the burden on individual entities and enhances the overall
efficiency of the system.

V. EXPERIMENTS

We provide experimentation and demonstration of our solu-
tion based on three key factors: robustness against bad actors,
accuracy and scalability of the weight-analysis algorithm. A
complete implementation of our solution was built and utilized
in this testing. Our results provide invaluable insights into
our solution, specifically, how the weight-analysis algorithm
accurately detects outlier training intervals and is linearly
scalable, and that the blockchain network is resilient against
the actions of participant bad actors.

A. Implementation and Setup

Our implementation is a blockchain network, tasked with
accepting, validating integrity of and storing information of
submitted neural network models. We built upon BlueChain
[29], a blockchain research framework, to create our unique
implementation. The network consists of a variable number
of independent nodes that communicate with one another in a
peer to peer environment. The nodes accept transactions from
a client that can connect to any number of nodes within the
network. The transactions accepted, in this case, are bundles
of model data. Model data submitted to the network include
access to snapshots of the model training process, dataset
used, and any other relevant info to be provided to nodes
for recomputation. Nodes arrange themselves into quorum and
non-quorum members in a unified but randomized fashion
using the most recent block in the chain. We utilize this
quorum selection process to determine nodes to delegate
retraining tasks to. The nodes within the quorum then agree
on whether to validate or invalidate the model according to the
verification process specified in our solution and then append a
new block to the chain with all relevant info about the model.

The experiments and implementation were conducted using
a system composed with Python and Java, leveraging libraries
such as TensorFlow, Keras, NumPy, and pandas. The platform
used for this study consisted of an Intel Core 17-13700k CPU
paired with an Nvidia GeForce RTX 4090 GPU.

B. Weight-analysis Accuracy Experiment

A set of test scenarios was developed, including variable
numbers of poisoned intervals, groups of consecutive poisoned
intervals, and clean intervals. For each scenario, the model
was trained, and then its snapshots from each interval were
analyzed. The model architecture employed was a simple feed-
forward neural network with a variable number of hidden
layers, each containing a variable number of neurons, and
a soft-max output layer for multi-class classification. The
number of training intervals varied according to different
test scenarios. The poisoning mechanism involved injecting
a backdoor pattern into the training data for the poisoned
intervals. The injected pattern was paired with the label of
the target class.

The detection of poisoned intervals was based on the analy-
sis of the model weights across intervals. The absolute change,
as shown in equation 1, in weights between consecutive
intervals was calculated, with significant changes potentially
indicative of poisoning or lack of training execution. A dy-
namic threshold was used to classify intervals as problematic
or clean based on these changes.

The evaluation of our detection mechanism involved calcu-
lating precision, recall, and F1 score. For each test scenario,
we also tracked the number of successful detections (true
positives) and failures (false negatives or false positives).

In addition to these standard evaluation metrics, we also
used two accuracy metrics to evaluate the model’s performance
on clean and poisoned test data. This allowed us to gain insight
into how well the model was performing its intended task and
how effectively it had learned the backdoor pattern.

Results were accumulated across multiple runs of each
test scenario, providing an aggregate view of the detection
mechanism’s performance. The final results, metrics, and
visualizations provide valuable insights into the efficacy of our
poisoning detection mechanism. This information is crucial in
assessing the potential of our approach as a defensive tool
against backdoor attacks on machine learning models.

C. Weight-analysis Scalability Experiment

Our study further probed the efficiency of the weight-
analysis algorithm by conducting an experiment to understand
its scalability relative to the complexity of the neural network
models. Scalability describes how a system adapts or performs
when it is subject to an increased load, which, in our case,
corresponds to the complexity of the model as defined by the
number of weights.

In this experiment, a range of neural network models were
created, each with a varying number of layers. These models
ranged from having a minimum of 5 hidden layers to a
maximum of 200 hidden layers, with an increment of 5 layers
for each successive model.

For each group of similarly structured models, comparisons
were performed on the weights of the models within the group,
with the objective of computing a single difference score. This
score represented the aggregate of the absolute differences
between the weights of the models being compared. The



0.07

—— Model Verification Time
-+ Model Snapshot Comparison Time

0.06

0.05

0.04

Time (seconds)

20 30 40 50 60 70 80 90 100
Weights (K)

Figure 2: Scalability of the Poisoning Detection Mechanism:
The graph displays the relationship between the complexity of
artificial neural network models (measured by the number of
weights) and the average computation time spent per model
snapshot and total time per model. The linear growth pattern
indicates a proportional increase in computation time with
model complexity.

time taken to compute the difference scores was recorded
and subsequently averaged over the number of comparisons
performed for each group.

Our experiment’s outcomes, as illustrated in figure 2,
provide invaluable insights into the computational demands
of our detection mechanism, a determinant factor for its
applicability in practical, resource-constrained environments.
The graph shows a linear growth pattern, indicating that the
average computation time increases linearly with the model
complexity. This observation is consistent with the theoretical
time complexity of the Absolute Change method we analyzed
earlier, reinforcing its computational efficiency.

Furthermore, the results also highlight the optimal model
size for our detection mechanism and offer substantial guid-
ance for prospective enhancements and improvements. The
discrepancies seen in the comparison time line can be de-
scribed as being a result of the different computation loads
demanded by the varying complexity of the models. Some
models may introduce more of a certain type of change in the
parameters where the algorithm spends more time accounting
for them.

These inconsistencies also hint at the existence of a potential
threshold of model complexity beyond which the poisoning
detection mechanism becomes computationally inefficient. For
models approaching 70, 000 parameters, the computation times
start to display a pronounced increase. This threshold indicates
an optimal balance point where the complexity of the model
and the efficiency of the detection mechanism can be main-
tained simultaneously.

This scalability experiment gives us crucial insights into
the design constraints that would need to be considered when
implementing this poisoning detection mechanism in a real-
world setting. Balancing the complexity of the models and
the computational efficiency of the detection mechanism will

be critical for maintaining the viability and effectiveness of
our system.

D. Robustness Experiment

100 =
80
S
o
10 e e —
o
>
Q
© 40
>
19}
Q
<€
20 _
—— Ordered Maliciousness
- Chaotic Maliciousness

10 20 30 40 50
Malicious Nodes (%)

Figure 3: Validation accuracy at varying percentages of mali-
cious nodes: The graph displays the relationship between the
percentage of malicious nodes and the accuracy rate of the
detection mechanism. Two scenarios are compared: ‘Ordered
Maliciousness’ and ‘Chaotic Maliciousness’. The accuracy
rate, represented as a percentage, is plotted against the percent-
age of malicious nodes in the network. The differing patterns
between the two scenarios highlight the effectiveness of the
detection mechanism under different conditions.

To evaluate the robustness of our blockchain network, we
conducted an experiment measuring how presence of bad ac-
tors affected performance. The percentage of malicious nodes
present in the network was varied and compared against the
percentage of how often the system correctly validated models.
The data collected allowed an assessment of the network’s
resilience to adversarial attacks, that is its ability to maintain
accurate functionality despite the presence of malicious nodes.

In this experiment, we created a series of scenarios wherein
the proportion of malicious nodes in the network ranged from
0% to 50%, with increments of 10%. For each scenario, we ran
a sample set of 20 neural network models through our system
and observed the network’s performance. The testing set was
comprised of 50% clean models that had been trained properly,
25% that had been trained on poisoned data in random sections
of training, and 25% that had been trained with poisoned data
at a random sequence of sections.

Malicious nodes were designed to behave in a way that
undermines the integrity verification process of the network.
Specifically, this behavior is triggered when a node is assigned
within a sub-quorum to recompute an interval. The malicious
node may report to its sub-quorum peers that it found no
issue with the interval when in fact the interval was invalid.
Realistically, bad actor’s behavior will vary according to
their specific purposes. To model this varying behavior we
defined two modes of malicious behavior. The first is “ordered
maliciousness”, where the bad node will attempt to validate
any invalid interval that it is assigned to. The second is“chaotic



maliciousness”, where the node will attempt to invalidate any
valid interval in addition to reporting invalid intervals as valid.
Both behaviors are a significant threat to the network, as they
have the potential to significantly undermine the network’s
ability to correctly verify the integrity of models.

The performance of the network was evaluated based on its
ability to correctly verify the integrity of the models, despite
the presence of malicious nodes. Two separate networks were
set up, the first of which whose malicious nodes were defined
as ordered malicious and the second being chaotic malicious.
The dataset was presented to both networks as the percent
of malicious nodes was increased. We measured the accuracy
of each network as a percentage of how often the network
correctly verified the integrity of a model.

Figure 3 shows that the network maintained relatively high
accuracy rates as percentage of malicious nodes increased. The
experiment demonstrates that for both malicious scenarios,
the network can validate models with 85% accuracy with the
network containing up to 20% percent of malicious nodes. The
network is more susceptible to chaotic maliciousness with ac-
curacy dropping significantly at percentages of maliciousness
greater than 20%. However, with ordered maliciousness the
network maintains 80% accuracy even up to a 50% makeup
of malicious nodes in the network.

These results demonstrate the robustness of our blockchain
network against adversarial attacks. They show that the net-
work can maintain its functionality and continue to correctly
verify the integrity of models even in the presence of a
significant proportion of malicious nodes. This robustness is
a key strength of our network and an important factor in its
potential for practical implementation.

VI. CONCLUSION AND FUTURE WORK

In conclusion, this research presents a novel approach to
ensuring the integrity of trained neural network models using a
blockchain-based system. Our proposed solution addresses the
critical issue of potential data poisoning or adversarial manipu-
lation during the model training phase. The system, involving
two primary entities: ‘submitters’ and ‘verifiers’, provides a
robust and efficient mechanism for model verification, through
intelligent assignment of training iterations to be recomputed
for validation. Our weight-analysis algorithm, tested on four
distinct approaches, has demonstrated promising results in
detecting outlying training intervals. Our implementation is a
novel contribution for testing and evaluation of our proposed
solution. Our experiments utilizing the implementation have
demonstrated robustness and the accuracy and scalability of
the weight-analysis algorithm.

Despite these promising results, we recognize that there is
room for improvement and expansion of our work. Future
research could explore the following areas:

o Enhanced Detection Methods: While our current de-
tection methods have shown promising results, there is
potential for further refinement or the development of
new methods. These could offer improved detection rates

or efficiency, particularly in more complex or subtle
poisoning scenarios.

o Real-world Applications: Our research has primarily fo-
cused on theoretical analysis and controlled experiments.
Future work could involve applying our solution to real-
world scenarios, which would provide valuable insights
into its practical performance and potential limitations.

o Scalability: While our solution has demonstrated good
scalability in our experiments, further research could
explore its performance with larger and more complex
models. This could involve developing methods to further
optimize the computational efficiency of our solution.

¢ Consensus Mechanism: Our system currently uses a
quorum consensus mechanism for model verification. Fu-
ture work could explore ways to enhance this mechanism,
such as by developing more efficient selection procedures
or by incorporating additional checks to further reduce the
risk of false positives or negatives. This could improve
the robustness and reliability of our system.

In summary, our research represents a significant step to-
wards ensuring the integrity of trained neural network models.
We believe that our work provides a strong foundation for
future research in this important area.

REFERENCES

[1] K. Sarpatwar, R. Vaculin et al, “Towards Enabling
Trusted Artificial Intelligence via Blockchain,” in Policy-
Based Autonomic Data Governance, ser. Lecture Notes
in Computer Science, S. Calo, E. Bertino, and D. Verma,
Eds. Cham: Springer International Publishing, 2019, pp.
137-153.

[2] A. Baldominos and Y. Saez, “Coin.Al: A Proof-of-
Useful-Work Scheme for Blockchain-Based Distributed
Deep Learning,” Entropy, vol. 21, no. 8, p. 723, Aug.
2019, number: 8 Publisher: Multidisciplinary Digital
Publishing Institute.

[3] R. K. Raman, R. Vaculin et al., “A Scalable Blockchain
Approach for Trusted Computation and Verifiable Simu-
lation in Multi-Party Collaborations,” in 2019 IEEE Inter-
national Conference on Blockchain and Cryptocurrency
(ICBC), May 2019, pp. 277-284.

[4] N. K. Bore, R. K. Raman et al, “Promoting Dis-
tributed Trust in Machine Learning and Computational
Simulation,” in 2019 IEEE International Conference on
Blockchain and Cryptocurrency (ICBC), May 2019, pp.
311-319.

[5] A. Shoker, “Sustainable blockchain through proof of
exercise,” in 2017 IEEE 16th International Symposium
on Network Computing and Applications (NCA), Oct.
2017, pp. 1-9.

[6] F. Bravo-Marquez, S. Reeves, and M. Ugarte, “Proof-of-
Learning: A Blockchain Consensus Mechanism Based on
Machine Learning Competitions,” in 2019 [EEE Inter-
national Conference on Decentralized Applications and
Infrastructures (DAPPCON), Apr. 2019, pp. 119-124.



[7] Y. Liu, Y. Lan et al., “Proof of Learning (PoLe): Empow-
ering neural network training with consensus building on
blockchains,” Computer Networks, vol. 201, p. 108594,
Dec. 2021.

[8] A. Lihu, J. Du et al., “A Proof of Useful Work for
Artificial Intelligence on the Blockchain,” Jan. 2020,
arXiv:2001.09244 [cs].

[9] M. Shafay, R. W. Ahmad et al., “Blockchain for deep
learning: review and open challenges,” Cluster Comput-
ing, vol. 26, no. 1, pp. 197-221, Feb. 2023.

[10] Y. Gao, C. Xu et al., “STRIP: a defence against trojan
attacks on deep neural networks,” in Proceedings of the
35th Annual Computer Security Applications Conference,
ser. ACSAC ’19. New York, NY, USA: Association for
Computing Machinery, Dec. 2019, pp. 113-125.

[11] W. Guo, L. Wang et al., “TABOR: A Highly Accurate
Approach to Inspecting and Restoring Trojan Backdoors
in AI Systems,” Aug. 2019, arXiv:1908.01763 [cs].

[12] C. Amarnath, A. H. Balwani et al., “TESDA: Transform
Enabled Statistical Detection of Attacks in Deep Neural
Networks,” Oct. 2021, arXiv:2110.08447 [cs].

[13] Y. Li, Y. Jiang et al., Backdoor Learning: A Survey.

[14] Z. Tian, L. Cui et al., “A comprehensive survey on
poisoning attacks and countermeasures in machine learn-
ing,” vol. 55, no. 8, pp. 1-35.

[15] Y. Li, Y. Bai et al., “Untargeted backdoor watermark:
Towards harmless and stealthy dataset copyright protec-
tion.”

[16] M. D. Zeiler and R. Fergus, “Visualizing and understand-
ing convolutional networks.”

[17] A. Barredo Arrieta, N. Diaz-Rodriguez et al., “Explain-
able artificial intelligence (XAI): Concepts, taxonomies,
opportunities and challenges toward responsible Al,”
vol. 58, pp. 82-115.

[18] S. Albawi, T. A. Mohammed, and S. Al-Zawi, “Under-
standing of a convolutional neural network,” in 2017
International Conference on Engineering and Technology
(ICET). IEEE, pp. 1-6.

[19] P. Hajela and L. Berke, “Neural networks in structural
analysis and design: An overview,” vol. 3, no. 1, pp. 525—
538.

[20] L. Wang, C. Wang et al., “Explaining the behavior of
neuron activations in deep neural networks,” vol. 111, p.
102346.

[21] H. Leung and S. Haykin, “The complex backpropagation
algorithm,” vol. 39, no. 9, pp. 2101-2104.

[22] N. Benvenuto and F. Piazza, “On the complex backprop-
agation algorithm,” vol. 40, no. 4, pp. 967-969.

[23] M. Stevenson, R. Winter, and B. Widrow, “Sensitivity
of feedforward neural networks to weight errors,” vol. 1,
no. 1, pp. 71-80.

[24] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,”
vol. 521, no. 7553, pp. 436—444.

[25] D. Yaga, P. Mell et al, “Blockchain technology
overview,” p. NIST IR 8202.

[26] D. J. Sumpter and S. C. Pratt, “Quorum responses and

consensus decision making,” vol. 364, no. 1518, pp. 743—
753.
[27] J. Liu, J. Huang et al., “From distributed machine learn-
ing to federated learning: a survey,” vol. 64, no. 4, pp.
885-917.
H. B. McMahan, E. Moore et al., “Communication-
efficient learning of deep networks from decentralized
data.”
[29] P. Lundquist, “Bluechain,” 2023, gitHub repository.

[28]





