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Abstract—Researchers collaborating from different locations
need a method to capture and store scientific workflow prove-
nance that guarantees provenance integrity and reproducibility.
As modern science is moving towards greater data accessibility,
researchers also need a platform for open access data sharing.
We propose Sciledger, a blockchain-based platform that provides
secure, trustworthy storage for scientific workflow provenance to
reduce research fabrication and falsification. ScilLedger utilizes
a novel invalidation mechanism that only invalidates necessary
provenance records. ScilLedger also allows for workflows with
complex structures to be stored on a single blockchain so that
researchers can utilize existing data in their scientific workflows
by branching from and merging existing workflows. Our experi-
mental results show that SciLedger provides an able solution for
maintaining academic integrity and research flexibility within
scientific workflows.

Index Terms—Scientific Workflow; Provenance; Blockchain

I. INTRODUCTION

A scientific workflow is a pipeline of processes conducted
to reach a scientific goal, usually comprised of tasks connected
by their data inputs and outputs. The provenance of a scientific
workflow is the audit trail that allows for the reproducibility of
scientific findings and proves the validity of a data product by
computing how it came to be [1]. There are two fundamental
requirements when collaborating on research projects with
members at different locations: ability to capture and distribute
data while also ensuring the integrity of the data collected;
open data sharing.

For the first requirement, there are a variety of existing
systems for managing provenance along a scientific research
workflow. Systems like Dataview [2][3] use centralized cloud-
based storage. Despite comprehensive data collection capabil-
ities, data integrity can no longer be ensured if the central
server is compromised. Others like Taverna [4], Kepler [5],
Galaxy [6], KNIME [7], and Pegasus [8] use locally main-
tained storage models. While data in local storage is more
secure than in cloud-based systems, having data stored locally
makes collaboration among multiple institutions difficult and
leaves the system vulnerable to falsification in the context of
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research. A survey among academic researchers found a self-
reported rate of at least one instance of research fabrication or
falsification between 2017 and 2020 to be estimated at around
8.3% [9]. Another investigation has been conducted recently
concerning the falsification of data in an Alzheimer’s research
paper published in 2006 in the journal Nature. It shows that
the paper in question has been cited over 2300 times and, if
proven falsified, could invalidate at least a decade of research
[10]. These cases illustrate critical and emerging needs for a
tamper-proof way of storing scientific data provenance and but
also establish a validation method among multiple parties.

For the second requirement of open data sharing that
can eventually enhance the confidence scientific findings, the
scientific community is striving towards greater openness on
research data, code, and workflow provenance. Some gov-
ernment agencies such as National Science Foundation and
private funders are beginning to require that researchers create
plans for data management and, in some cases, establish data
sharing [11].

This paper is motivated by the lack of a comprehensive
solution and propose a platform that can satisfy both needs.
The challenges of creating an ideal solution for scientific
workflow provenance are clear due to scientific research’s
varying and sometimes contradictory needs. Researchers need
immutability to ensure the integrity, non-reputability, and
reproducibility of findings but also flexibility for adaptability
in a workflow. If a researcher needs to redo a workflow task,
thus invalidating an old task, an immutable system does not
allow for changing or deleting records. Additionally, there are
many benefits to data sharing and open accessibility, but the
public nature of systems that support this openness lends itself
to privacy concerns for users. Blockchains are not designed for
storing large amounts of data directly on the chain, so these
solutions require integrating off-chain storage.

Among various existing methods, blockchain technology
with a decentralized, distributed ledger that stores the record
of data processing provides a promising and reliable method
for maintaining integrity of data Provenance and scientific dis-
coveries and has been investigated recently (see Section II for
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details). For example, SciBlock [12] proposed a tamper-proof
and non-repudiable storage for scientific workflow provenance
that relies on Proof of Authority consensus. The limitations
of this model comes from two facts. First, it suffers from
insufficient support for data sharing and invalidation of work-
flow tasks through the blockchain in a realistic and complex
environment, such as branching off from and merging existing
workflows, as every chain houses only a single workflow. For
this reason, a generic blockchain solution is usually not enough
and require additional support. Second, SciBlock’s invalidation
mechanism invalidates all blocks before a specified execution
time. If used to invalidate tasks within non-linear workflows,
this method would, in many cases, result in unnecessary inval-
idation of scientific workflow tasks, thus requiring researchers
to repeat workflow tasks needlessly.

Thus, as current research stands, there is a lack of a
public, blockchain-based system catering specifically to scien-
tific workflow provenance that allows researchers to perform
complex operations on multiple workflows stored on a single
blockchain.

This paper proposes ScilLedger, a novel, blockchain-based
solution for collecting and storing scientific workflow prove-
nance and open data sharing. SciLedger accommodates the
inclusion of multiple related and unrelated scientific workflows
on a single blockchain by adding an inception block to the
blockchain to indicate the beginning of each new workflow.
Our public design is open access allowing for greater data
sharing among researchers from existing partnerships and
fostering the formation of new collaborations by branching and
merging existing workflows. Additionally, ScilLedger features
an invalidation mechanism that allows researchers to effi-
ciently and reliably invalidate scientific workflow tasks. Before
the insertion of each new block, two separate Merkle trees
are constructed. The trees commit the hashes of provenance
records for the valid and invalid tasks of the given workflow
separately. Both Merkle roots are then included within the
provenance record that is to be included on the new block. By
looking at the latest block within a workflow, users can always
determine whether a provenance record is valid, invalid, or
yet to be attempted. Finally, while our solution promotes
accessibility for users, we also want to ensure privacy for
participants in the system and that users can only perform
approved actions. Using a quorum consensus mechanism and
including researcher public keys on the inception block for
each workflow, we ensure that while anyone can create a
workflow, only authorized public keys can add workflow tasks
while not requiring users to make their identities known within
the system.

The contributions of this paper are as follows:

e We propose a blockchain-based solution that supports
open access data sharing for scientific workflow prove-
nance and complex workflow operations such as branch-
ing from and merging several related and unrelated sci-
entific workflows on a single blockchain.

« We propose a novel invalidation mechanism that allows
researchers to modify workflows in a way that minimizes

modifications and ensures efficient verification.

o We have simulated ScilLedger on a blockchain and con-
ducted experiments to evaluate the scalability and perfor-
mance of ScilLedger.

The rest of the paper is organized as follows: Section II
presents related works. Section III provides an overview of
scientific workflows, provenance, and Merkle trees. Section IV
outlines the design and capabilities of SciLedger. Experimental
results are outlined in Section V and finally, our conclusions
are given in Section VL.

II. RELATED WORK

There are several works utilizing blockchain to record
data provenance. Some of these works attempt to target
specific fields like IoT [22][23][24], supply chain manage-
ment [25][19], cloud computing [20][26], machine learn-
ing [27], and GPDR data collection compliance [18]. Others
offer generic provenance collection capabilities for a variety
of applications. LineageChain [15] utilizes event listeners
to detect any attempts to modify data and proposes novel
techniques for achieving efficient query speeds and minimizing
required storage. BlockCloud [16][17] uses an approach sim-
ilar to that of LineageChain for detecting data modification
but also presents a consensus protocol where users stake
dedicated cloud resources. ProvHL [28] is built on a private
Hyperledger network and uses access control management
to control specific user actions. Sifah er al. [29] build upon
the idea of utilizing access control policies by proposing a
validation mechanism where actions are contingent upon users
obtaining consent from data owners. Duong and Dang [30] use
a public-permissioned model to support provenance collection
for open access data that can be integrated into existing
open access systems. These works address the data integrity
concerns of centralized solutions by taking a blockchain-based
approach. However, systems designed for generic provenance
applications fail to collect specific information about the
data being collected as is required by scientific workflows.
Additionally, except for [30], these works assume a private
blockchain that eliminates the ability to preserve user privacy,
meaningful validation or invalidation mechanisms, and open
access data.

A variety of works propose solutions specific to scientific
workflow provenance. BlockFlow [31] uses integrated event
listeners for detecting data modification like Lineage Chain
but builds the blockchain on top of the E-Science ECO-system.
SmartProvenance [13] and DataProv [14] use threshold-based
voting systems and customized smart contracts to validate
provenance records based on the Open Provenance Model.
Nizamuddin et al. [21] uses a decentralized database called
IPFES to store copies of every state of data for verifying records
between the blockchain and the database. SciBlock [12] in-
troduces a timestamp-based invalidation mechanism that sup-
ports modifying workflows. Bloxberg [32] introduces a unique
provenance model that includes configuration information,
code, and other data specific to scientific software systems.
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SciChain [33] introduces a solution optimized to support high-
performance computing systems and a consensus protocol
similar to that of SmartProvenance, designed to minimize
communication overhead.

Table I compares Sciledger to its most closely related works
and outlines the key features that set ScilLedger apart. Many
of these related works can sufficiently support generic prove-
nance collection but lack the specificity needed for comprehen-
sive solutions in scientific workflows. Even works specifically
addressing scientific workflow provenance may also have
limitations. SciBlock’s invalidation mechanism cannot be effi-
ciently utilized for complex workflows, as it could invalidate
workflow tasks unnecessarily. Bloxberg, SmartProvenance,
and DataProv do not provide the ability to invalidate workflow
tasks. Finally, all of these systems lack a public blockchain that
can store multiple workflows on a single blockchain, support
the branching off from and merging existing workflows, and
provide data sharing capabilities while maintaining privacy
among users.

ITI. PRELIMINARIES
A. Scientific Workflows and Provenance

Scientific workflows offer descriptions of the process for
reaching a scientific goal, often expressed as a set of tasks
connected by their data inputs and outputs. Provenance is
the chronology of an object, including its ownership, transfer,
and history. Depending on the provenance model utilized, the
provenance could include several other values, including the
time, location, and software used for the workflow task. In
scientific workflows, provenance collection would allow users
to track the changes made to a data product which is essential
for project reproducibility and scientific integrity.

B. Merkle Tree

Figure 1 visualizes the structure of Merkle trees. The Merkle
tree is a bottom-up constructed binary tree that uses hash
pointers to commit a set of n data points while allowing
for efficient verification (O(logn)) of membership and non-
membership of a data point within the tree. The top panel
specifically highlights the hash nodes and operations needed
to prove that data point 8 is a member of the tree. The verifier
must obtain three hash nodes (those with the red borders) and
perform four hash operations (those with green borders). The
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Figure 1: Membership verification using Merkle tree in
O(logn). Top panel: proving membership of data point 8.
Bottom panel: proving non-membership of data point 4.
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last hash operation gives the root of the tree, which is called
the Merkle root. If the Merkle root calculated by the verifier
matches the known Merkle root, the verifier can be confident
that 8 is a member of the tree in only O(logn) operations. The
bottom panel outlines the hash nodes and operations needed
to prove that data point 4 is not a member of the tree. The
closest data point above and below the data point in question
must be revealed. In the case, these data points are 3 and 5.
Two hash nodes (those with red borders) must be provided,
and the verifier must perform five hash operations (those with
green borders). If the Merkle root calculated by the verifier
matches the known Merkle root, the verifier can be confident
that 4 is not a member of the tree in only O(logn) operations.
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Figure 2: Schematic diagram of interworking layers in the ScilLedger system, using a four-task workflow for the automated
bird recognition process as an example. The workflow steps are as follows. (1) The scientist designated to perform the first
workflow task, as defined in the inception block, completes the task using previously collected data as input. Upon completion,
the validation and invalidation Merkle trees are constructed. A provenance record is then generated, which includes the new
output data hash and the two Merkle roots. (2a) The data output, provenance record, and Merkle trees from the first workflow
task are sent to be stored in the database. (2b) The scientist creates a block of the new provenance record to be submitted to
the quorum. (3) The block created is sent to the selected quorum to be validated. (4) Upon successfully validating the block,
the quorum members’ signatures are included on the block, which is then committed to the blockchain. The data output from
the workflow task is used as input for the next workflow task. Steps 1-4 are repeated until the workflow is completed and the

last block is committed to the chain.

IV. SOLUTION: ScilLedger

A. Solution Overview

Sciledger is a public, blockchain-based solution for scien-
tific workflow provenance. Figure 2 visualizes the different
layers of the ScilLedger system utilizing a four-step workflow
for the automated bird recognition process as an example.

On the execution layer of Figure 2, a four-step scientific
workflow summarizing a bird recognition process [34] is
visualized. The first workflow task, or 77, uses previously
recorded field audio as its data input and consists of the
resampling and noise suppression of the audio. Next, the
audio data ds resulting from 77 is used as the data input for
T> where audio segmentation is performed to select sections
of the signal that are considered promising and eliminate
segments with silence or background. Upon the completion of
T5, the updated audio d3 is used as the input for 75. The raw
signal is transformed into a small set of representative audio
features which provide compact descriptions of acoustic events
of interest. Finally, T} classifies d4 based on feature vectors
and precomputed models, resulting in a classification model.
For this example, the workflow provenance would allow users
to look at any data product, such as d4, and trace it back
through each step to the origin of the data d;.

On the blockchain layer, every block on the blockchain cor-
responds to a single workflow task. The relationships between
the blocks correspond to the dependency-based relationships
between workflow tasks. Each hash pointer stored within the
provenance records of blocks points back to the block whose
data output provides the given block’s data input. Upon the
completion or invalidation of a workflow task, the two Merkle
trees that commit the provenance records of the workflow’s
valid and invalid tasks are reconstructed, and the new Merkle
roots are included within the provenance record of the new
block. We will refer to the tree committing valid records as the
MTy and its root at the Ry . Additionally, we will refer to the
tree committing invalid records as the M 77 and its root at the
R;. Because of the limited storage space of the blockchain,
ScilLedger must integrate off-chain storage. The provenance
record for each workflow task is stored within a block on
the blockchain. A copy of the provenance record is stored
off-chain along with the corresponding scientific data and the
complete Merkle tree structures. Storing the Merkle roots on
the blockchain allows users to corroborate any determination
from the database on whether a provenance record is valid,
invalid, or yet to be committed to the blockchain. Finally,
while consensus was not the main focus of our research, the
public system lends itself well to a quorum-based consensus



protocol where other scientists serve as miners and validators
in the system.

B. System Design

In this section, we describe the main components of
the Sciledger system: Provenance (IV-B1), Off-Chain Data
(IV-B2), Workflow Branching and Merging (IV-B3), and
Ledger for Complex Workflows (IV-B4).

1) Provenance: Sciledger’s goal is to provide a compre-
hensive solution for scientific workflow provenance. Prove-
nance can include many elements, so the system design must
be generic enough to be applied to various scientific research
applications but also specific enough to store meaningful in-
formation regarding the scientific workflow processes. Before
committing any provenance records for a workflow to the
blockchain, a user must create and commit an inception block.
As shown in the blockchain layer of Figure 2, the inception
block contains the workflow design and scientist public keys.
Workflows must be predefined, so at the start of a workflow,
researchers must determine all workflow tasks and where each
task is receiving and sending its data input and output, respec-
tively. Additionally, SciLedger is designed to ensure that users
can only perform approved actions within a workflow. The
workflow design in the inception block specifies which scien-
tists are approved to perform and invalidate workflow tasks.
This way, when a block for a workflow task or invalidation is
submitted, the quorum can determine if the user is authorized
to perform this action. Once an inception block is committed
to the chain, the workflow processes can begin. Sciledger
stores scientific workflow provenance as provenance records.
Each workflow task has an associated provenance record,
the only information stored on the blockchain. Sciledger is
designed so every block on the chain comprises an individual
provenance record. Table II shows Sciledger’s provenance
records and each field they contain. The provenance record
includes a unique ID for the specific task and a unique ID for
the specific workflow. Together, these two values distinguish
an individual provenance record from all other provenance
records. The provenance record also includes the public key
for the scientist who performed the task and the task execution
time. These help with block validation within the quorum.
The data inputs and output are hashed and included within
the provenance record as well as Ry and R;. Since the M Ty,
needs to commit the hashes of all valid provenance records,
the hash of the provenance record for which M Ty, is being
constructed will contain all fields except the Ry (which is
what is being created). To support custom provenance for
scientists, ScilLedger also allows scientists to add extra fields
to the provenance records for other values they wish to be
stored on the blockchain. These extra fields could represent
custom workflow task relationships or a variety of text fields
specific to a certain workflow.

2) Off-Chain Data: Because of limited storage capacity on
the blockchain, SciLedger integrates a distributed, off-chain
storage system. As shown in step 3a of Figure 2, the database
receives the same provenance record that was added to the

Table II: Provenance Record Design

[ Provenance Record |

Field Description
Task ID The task’s assigned identifier value
Workflow ID The workflow’s assigned identifier value
User ID Public key belonging to the task performer
Execution Time The task’s execution time
Input Data Hash pointer to data before modification
Output Data Hash pointer to data after modification
Ry Top hash for MTYy,
Ry Top hash for MT7;
Other Extra fields for custom provenance values

blockchain along with the data output and Merkle trees after
completing a workflow task. Then, as shown in step 6 of
Figure 2, the data output from a previous task is retrieved
from the database and is used as a data input for the current
workflow task. Because all data is stored off-chain, verification
is necessary to ensure that information in the database can be
trusted. The process for verification will be explained later in
the system design.

3) Workflow Branching and Merging: Sciledger’s design
supports the inclusion of multiple workflows on a single
blockchain. Figure 3 visualizes the blockchain with the cor-
responding blocks for four different workflows (A-D). The
inception block, which has the designation ICP, is added to
the blockchain before any of the blocks corresponding to
workflow tasks. Since ScilLedger is a public system, the ability
to branch and merge research in a different direction from an
existing workflow can allow researchers to avoid repeating
workflow tasks that other researchers have already completed.
By allowing researchers to share data, ScilLedger supports a
faster route to scientific discoveries. As shown in Figure 3, if
a scientist wants to use the data output from workflow task
T4, as input data for a new workflow, then that scientist can
branch from block A;. Workflow C is an example of this
process. Additionally, a scientist can perform a merge if they
want to utilize data outputs from multiple workflows as inputs
for a new workflow. Workflow D is an example of merging the
data outputs from workflow task 7’4, and workflow task Tz, .
Advanced operations such as branching and merging allow
researchers to bypass the repetition of workflow tasks done by
others and begin their workflows at the point in their research
where they are performing unique tasks.

4) Ledger for Complex Workflows: An essential component
of each block on the blockchain is its hash pointers. Hash
pointers for each block point back to the block or blocks that
supplied its data input. By giving blocks the ability to store
multiple hash pointers, the blocks for a given workflow can
take the form of a directed acyclic graph (DAG), allowing the
blockchain to house complex workflows. A complex workflow
is non-linear, meaning that workflow tasks do not have to
have only one input. Figure 3 provides a visualization of
the blocks corresponding to workflow B’s complex workflow.
Blocks B; and B; contain hash pointers to the inception block.
In workflow B, the researcher may need to initially perform
two separate tasks where one task does not provide input for



the other. However, after completing these separate workflow
tasks, their data outputs may be needed as inputs for the third
workflow task, T’g,. At this point, the data is merged and
results in block B3 which contains hash pointers to both B;
and B,. Many scientific workflow processes are non-linear
and may deviate to perform unrelated tasks before combining
data products in later tasks, so ScilLedger is designed to
accommodate complex workflows.
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Figure 3: An illustration of the blockchain with blocks
corresponding to four workflows A — D.

C. Invalidation

1) Purpose: To support the reproducibility of data produced
from a scientific workflow, SciLedger requires scientists to
pre-establish their workflow designs in the inception block.
After adding a workflow task to the blockchain, scientists may
need to go back and redo a workflow task. However, given
the immutable nature of the blockchain, there is no way to
remove or modify provenance records once added to the chain.
This problem presents the need for an invalidation mechanism
that works within the constraints of the immutable blockchain
while also providing users the flexibility they need within
scientific research processes. Allen and Mehler [35] analyzed
studies using pre-established workflow designs, noting that
over 60% of them concluded with null results while only 5-
10% of traditional studies produced null results. They indicate
that while pre-establishment curbs retroactively modifying
hypotheses to fit research results, it limits the flexibility of
the scientists to adapt their workflow based on the needs of
the study. A goal of ScilLedger is to prevent scientists from
retroactively altering hypotheses to match results while avoid-
ing the issue of null findings resulting from pre-establishing
workflows. By offering an invalidation mechanism that records
an immutable record of any workflow modification, we can
maintain both academic integrity and research flexibility.

2) Invalidation Process: An invalidation block is added
to the blockchain for an authorized researcher to invalidate
a workflow task successfully. Figure 3 visualizes the blocks
corresponding to workflow A. Before the invalidation of block
Ag (invalidation is indicated with an ”X”), the only blocks
committed to the chain were the inception block, block A,
and block A,. When an invalidation must occur, the database

will trace all dependencies down the blockchain from the
original invalid block. Tracing dependencies allows the system
to determine which blocks down the chain must also be
invalidated, including blocks within the same workflow as well
as blocks in other workflows. At the end of every workflow
affected, an invalidation block is added. After tracing the
dependencies and identifying all invalid blocks, each work-
flow’s MTy and M T are reconstructed with updated entries.
The new Ry and R; are then included on the invalidation
block, which contains a hash pointer pointing back to the
block in the workflow with the most recent execution time.
By connecting the invalidation block to the last data state in
a workflow, researchers to be sure of the most current state
of their workflows and know which workflow tasks to redo
accordingly. In the case of Figure 3, if block As needed
to be invalidated, M7; will only commit one provenance
record because A, did not have any dependencies committed
to the chain. Once this is determined, and the Merkle roots
are computed, the invalidation block is created with a hash
pointer to block Ay because it has the most recent execution
time. The MTy will commit the provenance record for A;
as before, and MT7 will commit the provenance record for
As. The researchers from this workflow can determine that
the last good state of data is the output from A, so they
must resume the workflow from there and redo A,. The task
IDs for workflow tasks that are redone following invalidation
will be slightly altered to reflect which iteration of the task
is being done. This is shown in Figure 3, where block A, is
replaced with block As ;. After redoing necessary workflow
tasks, researchers can continue executing additional workflow
tasks as usual.

D. Block Verification

1) Merkle Tree Usage: Sciledger uses Merkle trees to con-
firm the validity of provenance records as determined by the
database. MTy will commit in order every valid provenance
record from the given workflow and any provenance records
that make up its history as a result of branching from or
merging other workflows. MT; will commit all invalidated
provenance records only from the given workflow, also in
order. When creating a new block, the Merkle trees will be
reconstructed and used to compute the two Merkle roots that
are included in the provenance record of the new block. As
shown in Figure 3, workflow D utilizes data outputs from
workflow A and B as input. The Ry on the last block
corresponding to workflow D will commit all provenance
records in workflow D as well as all of the provenance records
that are a part of its history from workflows A and B, which
would be the provenance records on blocks A; and Bs.

2) Verification Process: To verify the existence and validity
of a provenance record using the blockchain, we utilize the
My, structure from the last block of the workflow to hash
the provenance records in the database and then hash pairs
in order, repeatedly until we produce Ry . The Ry computed
from the database can then be compared with the Ry included
in the workflow’s latest block. If the roots do not match, then



the user knows that the database has been changed in some
way, by invalidation or potentially by malicious action. To
confirm that a provenance record is invalid and has not been
altered due to malicious activity, we introduce the M T}, which
commits only invalidated provenance records. To verify that a
record has been invalidated, we use the M1 structure to hash
invalid provenance records in the database and hash pairs to
produce R;. The resulting R; can then be compared to the Ry
contained on the latest block on the blockchain. If the roots
match, the user can be sure the block has been invalidated
on the blockchain rather than altered due to malicious action.
Overall SciLedger’s two-tree verification method ensures that
users can distinguish malicious actions in the network from
authorized invalidation of workflow tasks. This method pre-
serves the scalability of the blockchain by minimizing storage
overhead while ensuring the integrity of scientific workflow
provenance and the corresponding scientific data.

E. Reaching Consensus in a Public Permissionless System

To support open access data, SciLedger operates as a public,
permissionless system that allows researchers to share data
without making their identities known to the network. This
arrangement lends itself well to a quorum-based consensus. If
a scientist wants to add a block to the chain, they must submit
the block to the quorum with an associated smart contract.
To create a quorum, we select a random group of nodes and
validate a block based on the percentage of the quorum that
approves the block after executing the smart contract. We have
determined the ideal quorum size to be 5% of the network.
Additionally, for a block to be committed to the blockchain,
70% of the quorum must approve the block. The reasoning
behind these percentages is outlined in our experiments.

V. EXPERIMENTS
A. Good Quorum Evaluation

We opted to design the quorum size based on modern
research’s latest information concerning academic fraud. Work
by Gopalakrishna et al. [9] analyzed a variety of anonymous
surveys from Dutch researchers in all scientific fields over
three years. Their conclusions determined that 8.3% of re-
searchers fabricated or falsified data at least once during those
three years [9]. These results are significantly higher than
estimates from previous works by Fanelli [36] who analyzed
academic fraudulency to be around 1.97% in 2009. Using
Gopalakrishna et al. work as an upper bound while factoring in
the upper limit of their confidence interval, we set a potential
estimate of fraudulency in SciLedger to be approximately 12%.
Using this value, we designed an experiment to algorithmically
compare the percentage of good quorums among several test
network sizes in Figure 4 to the size of the quorum relative to
the network and the threshold a quorum needs to reach to be
validated. We fix the malicious nodes in the system to be 12%.
We assume the malicious nodes represent scientists looking
to intentionally sabotage reaching consensus or approve bad
blocks for research manipulation. A randomized Boolean list
is created to model blockchain nodes with a variable size

of 100, 500, and 1000 and then is used to select a variable
number of entries to simulate a quorum. Within the quorum
selected, the program identifies the percentage of good nodes,
and if it is over the threshold, that quorum is considered
good. This process is averaged 10,00 times and identifies
the average percentage of good quorums achieved within that
configuration.

Observations. First, we observe good quorum percentages
are generally higher among a larger network size. Second,
higher quorum thresholds generally decrease good quorum
percentages. Third, larger overall quorum sizes generally
increase good quorum percentages except in the case of a
quorum threshold of 90%. In all network sizes, the percentage
of good quorums with a threshold of 90% slopes downwards.
Lastly, the best option where Sciledger can consistently
validate correct transactions in any sized blockchain is with
a quorum threshold of 70% and a quorum size of 5% of the
network. This option preserves the system’s scalability and
reliably counteracts malicious nodes in the network.

B. Block Upload Speed

To generate sample workflows, we created a program to
generate random workflows in various formations and then
averaged the time required to upload the corresponding blocks.
This program also combines the workflows on the blockchain
to replicate ScilLedger’s multi-workflow capabilities and test
the network speeds based on the shape of the blockchain.
Randomly generating workflows ensures complex operations
like branching and merging are accounted for in testing. Each
workflow stores a task object which contains the workflow ID,
task ID, an array with each task’s parents, and the hashes of
the input and output data. A Lorem Ipsum generator creates
this data with a fixed data size of 2 Mb. The size of the data
will only affect the performance of the SHA-256 algorithm
used to hash the data. The task object also stores two Merkle
trees that include hashes of all the tasks in the workflow. This
information is used to construct a provenance record for the
task object. The provenance record only stores the Merkle root
for the Merkle tree. The provenance record is included on a
block, and communication is initiated between the nodes in the
network to achieve quorum consensus before it is uploaded to
the simulated blockchain. The performance of this process is
broken down into sections. First, the time to hash the input
and output data; second, the time to construct each Merkle
tree; third, the time to construct the rest of the block; and
fourth, the time it takes to reach consensus within a network of
varying size. Not shown here is any verification script quorum
members intend to use to confirm correct data. This script’s
denoted o would be consistent among all network sizes but
only vary depending on the number of quorum members that
need to run it, meaning that its addition to this graph would
be linear.

Observations. The time to hash the input and output data
in different network sizes stays constant and is not affected by
the network size. The Merkle tree construction time is only
affected by the number of previous blocks in the network, and
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the rest of the block creation process is consistently constant
time. The largest section in block upload time is the signature
exchange among quorum members. Given that there is an n?
relationship between the network size and the time it takes
to reach consensus in the quorum, the overall relationship

between network size and block upload time is n?.
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Figure 5: Block Creation Runtime.

C. Provenance Record Verification Efficiency

To test provenance record verification efficiency, we create
five workflows simulated on the blockchain containing 1000
to 5000 tasks, going up in increments of 1000. For each
blockchain size, we select 50 random blocks and calculate
the average number of operations that would be required for
two different approaches to three different types of verifica-
tion. Some approaches utilize the MTy and M1} to prove
the existence or non-existence of a provenance record on
the blockchain. These approaches use the number of hash
operations required to obtain the Merkle root of the tree and
then compare the root to the root on the blockchain. Other
approaches use brute force, and the number of operations is
simply the number of direct comparisons between off-chain
storage and the blockchain. Figure 6a shows the average
number of operations needed to verify the existence of a
provenance record on the blockchain. The first approach
verifies that a provenance record exists within its M7y . The

second approach is a brute force search of the blockchain until
the block containing the given provenance record is found.
Figure 6b shows the average number of operations needed to
verify the existence and validity of a provenance record on
the blockchain, meaning that the record exists and was not
later invalidated. The first approach verifies the existence of
a provenance record within its M7y, along with proving its
non-existence within the M1 for the last block on the chain.
The second approach verifies the presence of the provenance
record within the M Ty for the last block on the chain only.
Figure 6¢ shows the average number of operations needed
to verify the non-existence of a provenance record on the
blockchain. The first approach is to prove the non-existence
of the provenance record in both the M7y and M7y for the
last block on the chain. The second, brute force approach
iterates thorough the entire blockchain and confirms that a
block containing the given provenance record does not exist
anywhere on the blockchain.

Observations. To accommodate the large difference in scale
between approaches, Figure 6a and Figure 6¢ use a secondary
scale to visualize the average values of the data better.
Brute force approaches for verification of existence and non-
existence are significantly slower than SciLedger’s Merkle tree
solutions, as the number of operations is roughly the same as
the number of blocks in the chain. In Figure 6b, the verification
of existence and validity, the approach that verifies using only
the last block’s Ry, was consistently faster than the approach
that verifies using the Ry of the given provenance record
and the R; on the provenance record from the last block on
the chain. This finding informs our decision to use only the
Ry from the latest provenance record to verify existence and
validity. Overall, however, the relationship between the size
of the blockchain and the average number of operations to
verify the existence, existence and validity, or non-existence
is O(logn) operations.

VI. CONCLUSION AND FUTURE WORK

In this paper, we first identified two significant concerns
facing the collection of scientific data provenance, namely
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academic integrity and workflow flexibility. Second, we pro-
posed Sciledger, a blockchain-based system that supports
multiple complex scientific workflows and dependency-based
block invalidation. Third, we have conducted experiments
that simulate ScilLedger and test scalability performance and
network design. Our results show that SciLedger offers a
promising approach to maintaining academic integrity and
research flexibility within scientific workflows.

We identify two areas for potential future research.
ScilLedger does not support private data that can only be
viewed and used as input for new workflows by specific
researchers. Future work could investigate how differential
privacy in data storage supports a partially private model.
ScilLedger does not explicitly encourage any particular
consensus protocol. Future work could investigate consensus
mechanisms and novel ways of validating transactions for
scientific workflow provenance.
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