
MnemoSys: A Conditional Probability Estimation
Protocol for Blockchain Audited Reputation

Management
1st Daniel Rouhana*

Department of Computer Science
Washington State University

daniel.rouhana@wsu.edu

2nd Peyton Lundquist*
Department of Computer Science

Boise State University
peytonlundquist@u.boisestate.edu

3rd Tim Andersen
Department of Computer Science

Boise State University
tandersen@boisestate.edu

4th Gaby G. Dagher
Department of Computer Science

Boise State University
gabydagher@boisestate.edu

Abstract—Reputation systems have been one method of solving
the unique challenges that face distributed networks of inde-
pendent operators. Fundamentally, historical performance must
be considered in a way that attempts to predict future behav-
ior, optimize present functionality, and provide some measure
of immutable recording. In this paper, a three-part system,
MnemoSys, is proposed to solve this diverse set of problems. First,
historical performance is dynamically weighted and scored using
geometrically expanding time windows. Second, a quorum is
abstracted as a restricted Boltzmann machine to produce a condi-
tional probability estimate of log-normal likelihood of good-faith
behavior. Third, all rewards and punishments are recorded on an
immutable, decentralized ledger. Our experimentation shows that
when applied iteratively to an entire network, consistently under-
performing nodes are removed, network stability is maintained
even with high percentages of simulated error, and global network
parameters are optimized in the long-term.

Index Terms—Blockchain; Reputation System; Boltzmann;
Quorum; Distributed Systems

I. INTRODUCTION

Distributed networks of independently operating computers
require resilient protocols ensuring procedural integrity, val-
idating data provenance, and proving accuracy. A potential
solution to this problem is a distributed peer-to-peer network
of nodes who rely on each other for computational validation;
however, a robust system for measuring reputation is necessary
for a dependable system. Each pre-existing implementation has
its own features targeted for optimized performance, but the
main requirements and challenges remain universal. Primarily,
a hard measure of “trust” must be produced by the system as
an operational metric for quantifying reliability of an operator
or element in that system. The method for producing this
value must have some dynamic capabilities to respond to
changing network conditions, detect anomalous behavior, and
identify likely malicious nodes. Specifically, nodes can operate

*These authors contributed equally.

in a few different ways that propose challenges to these
systems. For example, a malicious node acting alone can alter
its behavior after a period of high reputation. When acting
together, malicious nodes can perform shilling attacks, where
dishonest feedback is submitted to either boost the ratings of
other malicious nodes or to lower ratings of non-malicious
nodes.

Broadly speaking, there are two main avenues of approach-
ing the above distributed network problems – structural and
mathematical solutions. Structural solutions are usually mech-
anistic in nature, opting to architect transfer of data (rather
than manipulation of the data) or gate network access in some
capacity; these solutions can easily become contrived, difficult
to scale, and often require varying degrees of centralization
to function. On the other hand, mathematical solutions seek
to detail a mechanism that strikes a balance between formal
rigidity and ability to adapt to dynamically changing network
conditions. For example, TrustGuard works to detect dishonest
feedback using personalized trust values. Consequently, the
trust value of a node from the perspective of other nodes may
be very high, while its trust seen by the rest of the system
might be low [1]. EMLTrust builds off of their work, instead
using a biased support vector machine (SVM) classifier with
pre-determined features [2]. This is an unworkable approach
for decentralized systems, as it requires either a local copy
of the SVM or some central processing station. EigenTrust
determines reputation purely off of a matrix analysis of global
reputation of a peer, given by local trust values weighted
by global reputations of assigning peers [3]. To implement
this in a blockchain-based reputation system would require
an image of the global reputation values of the network,
combinatorically expanded to hold every nodes’ rating of every
other node. However, the largest shortcoming of the above
works is the assignment of reputation scores from other nodes,
leaving the door open for shilling attacks from coordinated
malicious nodes.

GABYDAGHER
Text Box
This is the preprint version. Please see IEEE for the final official version.

With these considerations in mind, this paper presents the
following contributions.

1) We propose a novel distributed system, named
MnemoSys, that ensures integrity and accuracy of
computations by keeping track of the reputation score of
each user in the system using a decentralized ledger to
record reputation adjustments.

2) MnemoSys uses dynamic historical performance scoring
where time is sliced into geometrically expanding inter-
vals, assigning an inverted harmonic weight to the mean
performance within those time intervals to calculate a
reputation score.

3) MnemoSys utilizes the Slow Boltzmann Estimator (SBE),
a novel method of computing a probabilistic measure of
confidence using the reputations of a stochastically se-
lected quorum of users. A log-normal likelihood of good-
faith behavior is produced, invariant of the performance
of the current quorum, to then increment or decrement
their respective reputation histories.

4) We implemented MnemoSys over a simulated distributed
network of independent nodes parameterized to accu-
rately simulate real-world performance. Our experimental
evaluation results show that our system enforces honest
behaviour by removing consistently under-performing
nodes, accurately and immutably recording reputations,
and stabilizes the network as a whole in conditions of
extreme failure.

II. RELATED WORK

In this section, we identify similar research in decentralized
networks using reputation systems. Afterwards, we dive fur-
ther in to research surrounding our abstraction of a Restricted
Boltzmann Machine (RBM).

Research has been widely conducted for distributed net-
works using reputation mechanics, which associate partic-
ipating nodes with a reputation score. This score allows
many systems to make predictive decisions regarding a node’s
role within the network to facilitate more honest mem-
bership, as explored in [2][1]. Much research has focused
on blockchain-based, distributed reputation systems, which
store reputation on the blockchain, discussing these mecha-
nisms [4][5][6][7][8][9]. Other papers [10][11] consider using
blockchain based reputation systems in addition to Federated
Learning, in order to produce a trustable ML model. Our
proposed system relates to each of these categories of research,
and explores mechanisms across each to deliver a blockchain
based approach that can produce verifiable computation.

TrustGuard, a framework for efficient and dependable rep-
utation systems, proposes a methodology to improve calcula-
tions of trust score, past the common simple averages. Their
”Strategic Oscillation Guard” acts as a safeguard against a
large issue in many distributed reputation systems, that is, a
malicious node intelligently adapts its behaviour to gain the
system. As noted by [1], a bad node may act in good faith,
build a solid reputation, and then began acting maliciously.
Alternately, a bad node may oscillate between good and bad

behaviour in such away that the bad behaviour is sustainable.
A concept described as ’Fading Memories’ is introduced,
where reputation history of a node is weighted differently
according to how distant in time the event occurred, with
most distant events being weighted the least. Time events
are then aggregated in to intervals, with further events being
more aggregated; windows are then moved forward one step
to produce an estimated confidence for the present time. We
modified this concept in order to increase fairness to the
system where nodes may be afforded forgiveness over time.
This approach avoids punishing well-intentioned nodes who
may have failed to perform their expected behaviour, for
example by losing power during a single computation. The
node would be punished in the short term, but forgiven if
proved to be generally an honest actor.

Kaci and Rachedi [4] propose their PoolCoin blockchain
wherein the system aims to solve the problem of dishonest
miners joining and damaging mining pools. Their solution is
to assign ’trust scores’ to miners and managers, which are
stored on the blockchain within transactions, providing an
immutable record of reputation for each node in the system.
From this trust score, they derive a cost the miner needs to pay
to the mining pool manager in order to participate. If a miner
submits valid PPoWs (Partial Proof-of-Works) to the Pool
Manager, their trust score is increased, thus decreasing the
cost of participation for the next round. In addition, PoolCoin
offers a machine learning module that allows the Pool Manager
to predict the genuine computational capacity of miners as an
additional layer of honesty enforcement. In contrast to their
solution, ours does not incorporate any monetary mechanisms;
rather, we can adhere simply to the reputation principle. Their
trust score limits the miners’ participation by adjusting the
cost to join. Our nodes’ trust score directly influences whether
members accept or reject the computation a miner performs.
Leaning in to the reputation structure rather than on monetary
mechanisms, will deter many malicious actors from organizing
an attack.

A solution for a scalable BFT consensus for blockchain
networks proposed by Bugday et al. [5] introduces a mech-
anism which selects a subset of nodes to participate in a
consensus group for the network operations. This quorum is
derived from an adaptive hedge method (AHM) that uses
the on-chain reputation values. This employs a triangular
distribution across the network’s nodes as to allow some low
confidence nodes to enter the quorum for fairness. Similarly,
MnemoSys implements a quorum-based consensus which fa-
vors quorums made of reputable nodes. Although, rather than
using the AHM, we choose the Boltzmann machine to predict
quality quorums, but regardless of the quorum’s reputation
composition, the group is still allowed to operate. However,
participation does not guarantee their consensus is valid, but it
may still positively impact the nodes’ reputations. This unique
mechanism provides a maximum fairness as each node has
equal opportunity to participate and redeem their individual
reputations, which naturally levels the playing field more so
than alternative methods.

A blockchain-based machine learning framework for edge
services (BML-ES) proposed by Tian et al. [12] provides a
solution for computationally weak IIoT devices to participate
in computing and aggregating ML models to produce decision
trees. MnemoSys tackles a similar core issue, although our
nodes in the network are not assumed to be weak. BML-ES
chooses to have training nodes engage in a smart contract
which locks a deposit with a task publisher, who may ask
trainers to make a decision tree. MnemoSys opts to leverage
a reputation-based incentive system, rather than a monetary-
based system. Their framework includes a Proof-of-Training-
Quality to solve the problem of lazy or malicious task training
nodes, a large challenge we also face in this paper. Tian et al.
[12] mentions how accuracy of calculations may be verified
using test sets as well as a ’verification formula.’ This formula
has a binary output determining if a model is verified or not
by using accuracy of the model as the determining factor. The
accuracy of the model is a weak form of establishing trust.
A model may have low accuracy, yet the training node was
honest in the process of constructing it, perhaps caused from
the original data set. We instead choose to employ a reputable
quorum of trainers, who must reach a consensus on the model,
or other computation, creating a more trustworthy process.

Other valuable research which utilizes a similar Boltzmann
machine includes: Cheng et al. [13] with their Reduced Boltz-
mann Machine (RBM) probabilistic modeling performance
analysis. In this work, they explore using the RBM as an
approach for unsupervised generative modeling of both quan-
tum and classical data sets, and in the process demonstrate the
RBM as a robust modeling technique.

Singh et al. [14], uses a deep Boltzmann machine based flow
analyzer in their proposed deep-learning-based blockchain
framework. This Boltzmann machine is able to detect anoma-
lous behavior within the system, providing an important qual-
ity of dynamic responsiveness in the face of such behaviour.
This flexibility and responsiveness is provided in MnemoSys
as well using a Boltzmann machine, but rather than anomalous
behaviour, it is used to predict the outcome of a quorum
based on node reputations. This similarly provides MnemoSys
a dynamic and responsive quality in the face of low quality
or malicious nodes.

III. PRELIMINARIES

A. Consensus

Distributed and decentralized blockchain networks, such as
Bitcoin, require mechanics for the majority of nodes in the
system to have a nearly identical perspective of the system’s
state. This includes the blockchain, and more specifically, what
data is on the blockchain at a given moment. It is important
for the nodes to have a common view, so the network as a
whole can operate as a cohesive group. Otherwise, unexpected
behaviour or consequences may arise. For example, these
networks may allow you to query the state of the blockchain
by connecting to any single node, but if the network has
disagreements about the blockchain, your response back from
the node may be different depending on who you happen to

connect to. One node may show you have 10 assets recorded
to belong to you, while another says you have 5. This concept
of a common agreement amongst many members is called
’consensus’. The way in which the members achieve the
agreement is their ’consensus algorithm.’ The most commonly
used consensus algorithms today are PoW (Proof of Work) and
PoS (Proof of Stake).

B. BFT

When implementing our consensus algorithm, the most
important consideration was the ability to tolerate dishonest
nodes who may try to bring the system down or who deceive
other nodes for personal gain. Consensus algorithms which
can tolerate up to one-third of nodes being malicious are
considered to be Byzantine Fault Tolerant (BFT), named after
the Byzantine Generals problem posed by Leslie Lamport and
his colleagues in 1982. Being BFT allows us to continue
system operations while faced with considerable amounts of
bad or ill actors.

C. Quorum

One such way to achieve consensus on the system’s state
and scale alongside an increasing amount of nodes is to use
a quorum-based consensus protocol. Consider a node to be
a member within a set. A quorum refers to a subset of
members selected in order to come to a consensus which
will be representative of the whole system. What the quorum
decides, the rest of the members should follow. Generally, a
quorum follows the BFT consensus standard within the group,
asking two-thirds of members to agree, tolerating one-third to
be dishonest or ill. A quorum may also be required to reach
unanimous consensus in order for other members to accept
a decision. In MnemoSys, we ask the quorum to completely
agree on the system’s state, or to choose a new quorum.

IV. SOLUTION: MnemoSys

A. Solution Overview

There are three main components that form MnemoSys.
First, proposer and quorum performance is recorded on a
decentralized ledger; this is key to the formulation of the repu-
tation score, as all recent successes and failures are considered.
Reputation is then calculated using a weighted harmonic mean
(WHM), with weights applied inversely to the expanding time
windows. A quorum is then stochastically determined, and a
confidence metric is produced using an abstracted application
of a Restricted Boltzmann Machine (RBM).

B. Decentralized Ledger

In order to be fully trustless, this protocol leverages
blockchain as an integral component for reputation manage-
ment. Performance is recorded on a private permissioned chain
irrespective to the outcome of the quorum. Figure 1 displays
both the system architecture and the individual blocks being
written to the ledger. Each block records the ID’s of the
block itself, participating nodes, and the project to which the
computation belongs. For each of the participating nodes, their

correspondent reputation adjustments are also written to the
block.

(a) Block diagram

(b) System diagram

Figure 1: System and block diagrams displaying recording
of relevant information for reputation management. Individual
node ID’s are recorded with commensurate reputation adjust-
ments; by recording ID’s of nodes and projects, both historical
reputation and project history can be aggregated efficiently.
The system diagram displays the four steps that result in the
appending of the block to the ledger.

The system diagram in Figure 1 also displays the four-step
mechanism that precedes the writing of the block to the ledger.
First, a participant in the network (referred to as the ”Pro-
poser”) submits a computation to be verified by the network.
Six nodes are then stochastically selected from the network
to serve as the verifying quorum. The quorum members will
then independently perform the same computation submitted
by the Proposer, arriving at the same or different result. Third,
the SBE produces a conditional probability estimate based
on the historical performance of the six nodes that compose
the quorum. Fourth, a new block is appended to the ledger
recording the aforementioned computational information and
adjustments to the reputations of the proposer and quorum
members, which depend on the results of steps two and three.
The specific adjustments and outcomes are enumerated in the
following section detailing the SBE.

Aggregating the reputation of a specific node or following
the progress of a specific project is a trivial mechanism
already used in many blockchain applications. For example,
the Bitcoin ledger tracks transactions largely through UTXO’s,
leaving wallets to determine their balance by trawling the
ledger and aggregating transactions moving to and from their
specific address.

The main advantage of MnemoSys is it’s focus on reputation
as the underlying currency of the ecosystem in which the
protocol operates. Adjustments are tracked on an immutable
ledger; no input is taken from the participating nodes outside
of their individual duties in the quorum or computation. This
is an improvement on previous reputation models, where node
operators are allowed to rate each other, leaving the door
wide open for shilling attacks. In this protocol, the scores
themselves are directly determined by both the quorum’s
results and the probability produced by the Boltzmann system.

C. Historical Reputation

Weighting historical performance is an open challenge
approached in many different ways. Tit-for-tat and ”strikes”
policies oscillate between being too lax and too draconian;
their rigidity allows some measure of gaming the system. An
implementation must also be dynamically scalable to respond
to volatility in network-wide performance. Moreover, recent
node behavior must be weighted higher than less recent.

Figure 2: Time slicing of historical performance. This example
uses ϵ = 2 to produce windows of length 2, 4, 8, and so forth.

Our proposed solution uses geometrically expanding time
windows moving into the past, with windows weighted in-
versely towards the present. Given some number of windows
k and a scale factor ϵ, the weight of a specific window n is
given as

wn = ϵk−n (1)

The aggregate sum of the weights is then produced as

k∑
n=1

wn =

k∑
n=1

ϵk−n (2)

The average performance xn over a window n is the arithmetic
mean of the reputation scores within that time window, where
the denominator is the length of the time window.

xn =

∑ϵn

t=ϵn−1 xt

ϵn − ϵn−1
(3)

The inverse of the average normalized performance x−1
n times

the window weight wn is then summed

k∑
n=1

wnx
−1
n =

k∑
n=1

ϵk−nx−1
n (4)

From this, the reputation θ of a specific node i is the WHM
of the historical time windows, the weights of the windows
wn, and the average performance over those windows xn

θi =

∑k
n=1 wn∑k

n=1 wnx
−1
n

(5)

This system is inherently flexible and dynamic, allowing
for manipulation of a key target variables – the scale factor
ϵ. For example, when ϵ = 2 and k = 4, the respective
weights are wn = {16, 8, 4, 2}. Setting ϵ = 3 gives
wn = {81, 27, 9, 3}. Given an average historical perfor-
mance of xn = {0.5, 1, 1, 1}, WHMϵ=2 = 0.6596 while
WHMϵ=3 = 0.5990. The number of time windows can be
adjusted as well, though this has a less dramatic effect on the
reputation calculation.

D. Slow Boltzmann Estimator

When a node proposes a computation to the network for
validation, a quorum of six nodes is stochastically selected.
The three highest reputations in this quorum as chosen as
the “visible nodes,” while the others are “hidden nodes.” This
labeling has less to do with their appearance and more with
maintaining fidelity to the Boltzmann Machine nomenclature.

The RBM is a generative stochastic model that learns a
probability distribution given a set of inputs. It is trained to
maximize the expected log probability of a training sample
selected from some training set. The Monte Carlo Markov
Chain used to train an RBM begins at a random global
configuration and selects units randomly, allowing them to
stochastically update states based on energy gaps. It uses
simulated annealing to seek out thermal equilibrium, where
the probability of a global configuration is given by the
Boltzmann distribution. The RBM does not use expectation-
maximization like other commonly used systems, but seeks
to minimize Kullback-Liebler divergence. Also called relative
entropy, this is a type of statistical distance that measures the
difference between a probability distribution P and a reference
distribution Q

DKL (P ||Q) = H (P,Q)−H (P) = · · ·∑
x∈X

p (x) log
1

q (x)
−

∑
x∈X

p (x) log
1

p (x)

where H (P,Q) is the cross-entropy of P and Q and H (P) is
the entropy of P . Minimizing KL divergence is equivalent to
maximizing the log-likelihood, allowing the RBM to perform
gradient ascent on the log-likelihood of the observed data.

In the Slow Boltzmann Estimator (SBE), nodes are stochas-
tically determined and weights are functionally calculated. The
entire quorum is treated as an adiabatic system, where energy
is a direct result of the reputations of the consistent nodes.
Given a visible node vi and a hidden node hj , the weight wij

is the log of the average reputations θ

wij = log2

(
θvi + θwj

2

)
(6)

Global system energy can then be calculated with the follow-
ing formula

E = −

∑
i<j

sisjwij +
∑

i∈units

siθi

 (7)

In the following probabilistic calculations, configurations of
visible and hidden nodes are combinatorial expansions of all
potential combinations of “good” (1) and “bad” (0) behav-
iors. For example, three visible nodes have 23 configurations
si∈units = {111, 110, 100, 101, 011, 010, 001, 000}.
Given visible node configuration α and hidden node configu-
ration β, global system energy Eαβ is calculated by

Eαβ = −
∑

i∈units

sαβi θi −
∑
i<j

sαβi sαβj wij (8)

The resulting joint configuration probability p
(
vα, hβ

)
over

visible and hidden nodes depends on the energy of the joint
configuration normalized by the partition function Z, which
sums the energy of all possible configurations.

p
(
vα, hβ

)
=

e−Eαβ

Z
, Z =

∑
γδ

e−Eγδ

(9)

From this, we can derive the visible unit probability p (vα)
as the sum of the probabilities of all contained joint configu-
rations

p (vα) =

∑
β e

−Eαβ

Z
(10)

In a system with three visible and three hidden nodes, the
optimal visible node configuration α = 111 has a maximal
probability of 0.3907.

Figure 3: Example 6-node quorum with corresponding repu-
tations

This leads to the most powerful dynamic parameter of
MnemoSys; accepting or rejecting the results of the quorum
is contingent on the visible unit probability staying above
a decided threshold δ. For example, setting δ = 0.3 will
reject the results of all quorums that produce a probability
below this. Reputation is therefore adjusted based on the
outcome of both the above estimate and the following quorum
consensus. Assuming the proposing node offers a calculation
f(x) that arrives at some answer D, all quorum members
Np=6 = {N1, · · · , N6} must arrive at the same answer D by
performing an identical calculation f ′

Np
(x). This leaves room

for five potential outcomes.

Case #1: p(vα) > δ ∧ ∀p, f ′
Np

(x) = f(x)
The quorum reaches consensus, unanimously finding the
same answer that the proposing node found, and also reaches
a confidence estimate greater than threshold. The proposed
computation is approved; a block is written to the ledger
appending a 1 to the reputations of the proposing miner and
quorum participants.

Case #2: p(vα) > δ ∧ ∀p, f ′
Np

(x) ̸= (x). The quorum
reaches a consensus, unanimously finding an answer that
is not the proposed value, and also reaches a confidence
estimate greater than threshold. The proposed computation
is rejected; a block is written to the ledger appending a 0.5
to the proposing miners’ reputation and a 1 to the quorum
participants’ reputations.

Case #3: p(vα) < δ ∧ ∀p, f ′
Np

(x) = f(x). The quorum
reaches consensus, unanimously finding the same answer that
the proposing node found, but does not reach a confidence
estimate greater than threshold. The proposed computation is
rejected; a block is written to the ledger appending a 1 to the
reputations of the proposing miner and quorum participants.
This case specifically allows for the rehabilitation of the
quorum members’ reputations that resulted in the computation
being rejected. It is effectively a reward for perceived ”good-
faith” behavior.

Case #4: p(vα) < δ ∧ ∀p, f ′
Np

(x) ̸= (x). The quorum
reaches a consensus, unanimously finding an answer that
is not the proposed value, and does not reach a confidence
estimate greater than threshold. The proposed computation is
rejected; a block is written to the ledger appending a 0.5 to
the reputation of the proposing miner and a 1 to the quorum
members’ reputations. Rather than simply re-selecting a
quorum, this case specifically functions to penalize poorly
performing quorums. Their low SBE estimate is a further
indicator of previous sub-par performance.

Case #5: No unanimous consensus on f ′
Np

(x). In this case, the
participants of the quorum do not reach a unanimous value.
The proposed computation is rejected; a block is written to
the ledger appending a 1 to the reputation of the proposing
miner. Assuming all the miners responded but with different
values, a 0.5 is appended to all their reputations. If a subset
of the quorum is non-responsive entirely, a 0 is appended to
their reputations and a 1 is appended to the other participants’
reputations.

V. EXPERIMENTS

A. Reputation Scoring

In order to determine whether the historical reputation
system has the desired effects and modularity, controlled
experiments were performed using randomly generated perfor-
mances. To simulate both ideal and sub-optimal performances,
four distributions were selected – pareto, power, poisson,

and log-normal. Using these four historical performances, the
WHM was calculated on a rolling basis.

Figure 4: Four randomly generated distributions used to test
historical reputation scoring.

B. Slow Boltzmann Estimator

In order to confirm the theorized functionality of the applied
Boltzmann optimization process, a iterative testing approach
is required. First, the size of the quorum must be determined
and parameterized. The amount of visible nodes was varied
between 3 and 8; the amount of hidden nodes was varied
between 2 less than the visible nodes to 1 more than visible
nodes; this resulted in 24 total configurations to be analyzed.
From this, the optimal number of visible nodes was found to
be 3 as detailed in the Results/Analysis section.

The next point to be determined was the number of hidden
nodes, based on the probabilistic estimate resulting from the
quorum calculations. Visible node reputations were clamped
at a perfect 1.0, while hidden node reputations were set to 0.6.

C. Network Optimization

A similar approach was utilized towards quantifying the
effect this protocol had on the network as a whole. Three
different experimental conditions were evaluated.

1) All communication between nodes was subject to a global
”misfire rate” ϕg . For example, given ϕg = 0.05, a polled
node would return 1 with probability 1 − ϕg and return
0 with probability ϕg

2) Randomly selected nodes were tagged as ”malfunction-
ing,” and these tagged nodes were given a specific misfire
rate ϕt. This misfire rate only applied to these tagged
nodes, while untagged nodes performed perfectly

3) All communiciaton between nodes was subject to a
global misfire rate ϕg , and randomly selected nodes
were tagged with a specific misfire rate ϕt. For untagged
nodes, their effective rate ϕe = ϕg , while for tagged

(a) ϵ = 2 (b) ϵ = 3

Figure 5: Dynamic epsilon scaling’s effect on reputation using four identical distributions

nodes ϕe = ϕg + ϕt.

The iterative process for all trials was as follows.
1) One node is chosen at random to be the ”proposer”
2) Proposer node is polled, returning 0 with some probability

ϕe and 1 with some probability 1− ϕe

3) Six nodes are chosen at random to form the quorum
4) Joint conditional probability p(vα) is produced resulting

from the historical performances of the quorum members
5) Quorum nodes are polled, each returning 0 with some

probability ϕe and 1 with some probability 1− ϕe

6) Polled values are considered as agreement (1) or
disagreement (0), and reputations for proposing and
quorum nodes are adjusted as detailed in Solution - SBE
section.

Two specific parameters were targeted in these trials. First,
the clipping threshold represented the reputation level at
which nodes were deactivated and removed from the network.
Second was the SBE threshold below which quorums were
not accepted, invariant of their consensus. These parameters
were tested on their effect on global network mean reputation,
number of active nodes, and quorums accepted.

VI. RESULTS/ANALYSIS

A. Reputation Scoring

Since reputation is a lagging indicator ipso facto, there are
certain effects we can predict will result from dynamically
adjusting our scaling parameter epsilon. With a lower epsilon,
we can expect reputation to move less in result to performance
values further and further from an optimal score of 1. As seen
in Figure 5, increasing the epsilon value increases the variabil-
ity in the reputation values for the same performance histories.
Because of it’s lagging nature, measures of correlation are
fairly useless - instead, we can qualitatively see the increased
sparsity of the distribution.

By manually setting the historical performance values, we
can cleanly see the effect of ϵ on reputation. In Figure 6, the
perfect reputation history shows perfect reputation as expected.
By adjusting the most recent time window’s performance
to an average of 0.5, we then see the resulting ”near term
misperformance” line. The convexity and decreasing value
confirms the theorized effect that increasing epsilon reduces

Figure 6: The effect of ϵ on reputation for perfect and
imperfect history

the reputation score. For example, setting ϵ = 2.0 with the
imperfect history gives a reputation score of 0.659; setting
ϵ = 3.0 reduces this to 0.599, a reduction of nearly 10%.

B. Slow Boltzmann Estimator

The quorum size of six (”half jury”) was selected expressly
for mathematical efficiency. In this system, energy is calcu-
lated as the difference between state by reputation (si × θi)
and state by state by edge weight (si × sj ×wij). Increasing
the number of nodes thus lessens the effect of one node’s sub-
optimal reputation on the probabilistic estimate. For example,
quorum A with 3 visible and 3 hidden nodes has a maximal
probabilistic calculation of 0.3907. Quorum B with 8 visible
and 8 hidden nodes has a maximal probabilistic calculation
of 0.0816. 3 visible nodes yield 23 potential configurations,
while 8 visible nodes yield 28 potential configurations; all of
these configurations have joint probabilities that are summed
together in calculating the SBE estimate. A full sample calcu-
lation is shown in the Appendix.

Specifically increasing the number of hidden nodes yields a
few different issues. First, it makes computing the normalizing
term (partition function Z) less and less computationally
feasible. Second, sub-par performance by hidden nodes drags
down the computed score. For example, assume a quorum with
perfect visible node reputations and hidden node reputations
equal to 0.6. Quorum A with 3 visible and 3 hidden would
have a probabilistic estimate of 0.2514; quorum B with 3
visible and 5 hidden yields 0.1702. In Figure 6, these two quo-
rums are shown where ”configuration 0” is the targeted joint
probability - that all visible nodes are performing perfectly

invariant of hidden node performance. Third, larger quorums
increase probability of good-faith misbehavior, like latency
issues or disconnection.

Figure 7: Various visible/hidden quantities (legend) and cor-
responding configuration joint probability (y-axis)

Once the visible node amount was set at 3, the number
of hidden nodes was compared with the same experimental
conditions as above. Visible node reputation was clamped at
a perfect 1.0, while hidden node reputations were set to 0.6.

Figure 8: The effect of varying hidden node performance
on corresponding configuration joint probability. Networks
with more hidden than visible nodes had a more pronounced
flattening of their probability curves for all configurations of
correct and incorrect performance.

As seen in Figure 8, the reduction in hidden node perfor-
mance lowered the calculated value of configuration 0 - a
perfect visible node performance of ’111’. One less hidden
node maintained an identical maximal probability to perfect
reputation performance, while two more hidden nodes had the
worst performance. Clearly there is a balance to be struck be-
tween no exposure to node misperformance and over-exposure;
an equal number of visible and hidden nodes provided this
optimal balance.

C. Network Optimization

In training a Restricted Boltzmann Machine, the network
seeks to minimize KL-divergence, which has the effect of
maximizing log-likelihood. By inverting the usual operation
of the RBM - stochastically selected nodes and computed
weights, rather than constant nodes and stochastic weights -
this protocol was theorized to maximize the targeted param-
eters of network-wide mean reputation. However, this could
not come at the expense of draconian trimming of sub-optimal
nodes, eventually rendering the network itself useful. Iterative

progression in experimental parameters tested this hypothesis
under increasingly realistic conditions, providing consistent
results across all groups.

Figure 9 displays the results of the third mode of network
optimization testing, where all communication was subject to a
global misfire rate and randomly selected nodes were tagged
with a specific misfire rate. The SBE threshold for quorum
acceptance was 0.35, nodes were deactivated from the network
below a 0.7 reputation, global misfire was 0.05, and tagged
node misfire was 0.5. Networks were tested with 5%, 10%,
25%, 50%, and 75% of the nodes tagged as malicious. Figure
9(a) starts the entire network at a perfect reputation of 1.0,
while (b) starts the network at 0.8.

When starting at a 1.0 reputation, we see an immediate dip
in mean network reputation proportional to the percent tagged
as malicious. Reputation then converges by 8000 iterations,
aligning with a plateau in the number of active nodes. This
indicates that the protocol was successful in removing the
nodes tagged as malicious from the network. Table I shows
the number of nodes remaining after 1000 iterations over each
of the experimental conditions.

Tagged Portion Active Nodes

0.05 949
0.10 903
0.25 777
0.50 482
0.75 245

Table I: Number of active nodes remaining after the 10000
iterations visually displayed in Figure 9. Note that the protocol
was successful in removing all nodes tagged as malicious,
except for 3 nodes in the 0.10 trial and 2 in the 0.25 trial.

While beginning the network at a 0.8 reputation is a
relatively unrealistic condition, we can gain insight into the
functionality of the protocol in the face of even more sub-
optimal network conditions. In the highest percentage condi-
tion, 75% of the network is malicious and malfunctioning 50%
of the time. While it took closer to 8000 iterations instead
of 6-7000 to remove all malicious nodes from the network,
the protocol was still effective in rehabilitating mean network
reputation with no non-malicious nodes removed.

VII. CONCLUSION

MnemoSys is a three-part contribution to the field of repu-
tation systems, providing confidence for both the members
and users of the network. Historical performance is first
recorded on an immutable ledger tracking success, failure,
reward, and punishment. Geometrically expanding time win-
dows with exponential weighting preferentially consider near-
term results. From this, a quorum of six nodes is abstracted
as a restricted Boltzmann machine to produce a conditional
probability estimate of good-faith behavior by the members.
The results of both the estimate and quorum are then recorded
back on the immutable ledger, closing the circle and moving
on to the next quorum iteration.

(a) Starting reputation = 1.0 (b) Starting reputation = 0.8

Figure 9: Target network parameters after 10000 quorum iterations over 1000 nodes with SBE threshold at 0.35, reputation
clipping threshold at 0.7, global network error rate at 0.05, and tagged node error rate at 0.5. In both starting conditions, the
protocol converged, fully removing all malicious nodes and optimizing mean network reputation.

This protocol improves on previous reputation systems by
taking the actual rating out of the hands of the nodes them-
selves, subverting potential malicious behavior like shilling
attacks. Furthermore, the results derived from implementation
of the protocol over an entire network are a testament to the
mathematical power of probabilistic estimation. By abstracting
a quorum as a closed system with computationally derived
attributes, we can extrapolate a hard measure of confidence.
Around this metric, we can scale parameters like historical
window weighting, confidence acceptance threshold, and rep-
utation clipping threshold.

Future work yields opportunities to build and improve on
systems like this. For example, implementation over a fully
distributed network with communication performed over TCP
protocol would show how the gossip protocol actually allows
the network to reach consensus on the ledger updates. Work
can also continue on the mathematical formulation of the
reputation and confidence estimate. Different formulas can be
used for calculating weights between nodes in the quorum,
rather than the logarithm of the average reputation. When
tested over realistic conditions, a steady influx of new nodes
can be introduced to the network with its own rate of malicious
behavior.

By iterative application of the MnemoSys protocol, we can
begin to solve some of the problems that face distributed
networks. To ensure procedural integrity, an immutable ledger
holds all historical performance; to protect against malicious
behavior, under-performing nodes are removed from the net-
work per their reputation score result; to provide robust net-
work stability, parameters are able to be changed dynamically
to respond to variable network conditions.

REFERENCES

[1] M. Srivatsa, L. Xiong, and L. Liu, “Trustguard:
Countering vulnerabilities in reputation management for
decentralized overlay networks,” in Proceedings of the
14th International Conference on World Wide Web,
ser. WWW ’05. New York, NY, USA: Association

for Computing Machinery, 2005, p. 422–431. [Online].
Available: https://doi.org/10.1145/1060745.1060808

[2] R. Akbani, T. Korkmaz, and G. Raju, “Emltrust: An
enhanced machine learning based reputation system for
manets,” Ad Hoc Networks, vol. 10, no. 3, pp. 435–457,
2012. [Online]. Available: https://www.sciencedirect.
com/science/article/pii/S1570870511001867

[3] S. D. Kamvar, M. T. Schlosser, and H. Garcia-Molina,
“The eigentrust algorithm for reputation management in
p2p networks,” in Proceedings of the 12th International
Conference on World Wide Web, ser. WWW ’03.
New York, NY, USA: Association for Computing
Machinery, 2003, p. 640–651. [Online]. Available:
https://doi.org/10.1145/775152.775242

[4] A. Kaci and A. Rachedi, “Toward a machine learning
and software defined network approaches to manage
miners’ reputation in blockchain,” Journal of Network
and Systems Management, vol. 28, pp. 478–501, 2020.

[5] A. Bugday, A. Ozsoy, S. M. Öztaner, and H. Sever,
“Creating consensus group using online learning based
reputation in blockchain networks,” Pervasive and
Mobile Computing, vol. 59, p. 101056, 2019. [Online].
Available: https://www.sciencedirect.com/science/article/
pii/S1574119218306163

[6] T. Wang, J. Guo, S. Ai, and J. Cao, “Rbt: A
distributed reputation system for blockchain-based peer-
to-peer energy trading with fairness consideration,”
Applied Energy, vol. 295, p. 117056, 2021. [Online].
Available: https://www.sciencedirect.com/science/article/
pii/S0306261921005134

[7] R. Dennis and G. Owen, “Rep on the block: A next
generation reputation system based on the blockchain,” in
2015 10th International Conference for Internet Technol-
ogy and Secured Transactions (ICITST), 2015, pp. 131–
138.

[8] M. Li, H. Tang, and X. Wang, “Mitigating routing mis-
behavior using blockchain-based distributed reputation
management system for iot networks,” in 2019 IEEE
International Conference on Communications Workshops

(ICC Workshops), 2019, pp. 1–6.
[9] Z. Zhou, M. Wang, C.-N. Yang, Z. Fu, X. Sun,

and Q. J. Wu, “Blockchain-based decentralized
reputation system in e-commerce environment,” Future
Generation Computer Systems, vol. 124, pp. 155–167,
2021. [Online]. Available: https://www.sciencedirect.
com/science/article/pii/S0167739X21001850

[10] J. Qi, F. Lin, Z. Chen, C. Tang, R. Jia, and M. Li, “High-
quality model aggregation for blockchain-based feder-
ated learning via reputation-motivated task participation,”
IEEE Internet of Things Journal, pp. 1–1, 2022.

[11] Q. Zhang, Q. Ding, J. Zhu, and D. Li, “Blockchain em-
powered reliable federated learning by worker selection:
A trustworthy reputation evaluation method,” pp. 1–6,
2021.

[12] Y. Tian, T. Li, J. Xiong, M. Z. A. Bhuiyan, J. Ma,
and C. Peng, “A blockchain-based machine learning
framework for edge services in iiot,” IEEE Transactions
on Industrial Informatics, vol. 18, no. 3, pp. 1918–1929,
2022.

[13] S. Cheng, J. Chen, and L. Wang, “Information per-
spective to probabilistic modeling: Boltzmann machines
versus born machines,” Entropy, vol. 20, no. 8, p. 583.

[14] M. Singh, G. S. Aujla, A. Singh, N. Kumar, and S. Garg,
“Deep-learning-based blockchain framework for secure
software-defined industrial networks,” IEEE Transactions
on Industrial Informatics, vol. 17, no. 1, pp. 606–616,
2021.

VIII. APPENDIX

A. Sample SBE Calculation

Visible Nodes Hidden Nodes

t v1 v2 v3 h1 h2 h3

-2 1 1 1 1 0.5 1
...
-6 1 1 1 0.5 1 1
...
-14 1 1 1 1 1 1
...
-30 1 1 1 1 1 1
...
-62 1 1 1 1 1 1

Table II: Quorum node performance histories

Visible

v1 v2 v3

1.0 1.0 1.0

H
id

de
n h1 0.7948 -0.1561 -0.1561 -0.1561

h2 0.6597 -0.2692 -0.2692 -0.2692

h3 1.0 0 0 0

Table III: Corresponding edge weights for quorum nodes

Visible
(α)

Hidden
(β)

−E e−E p(vα, hβ) p(vα)

1 1 1

0 0 0 3 20.085 0.0192

0.3179

0 0 1 4 54.598 0.0523
0 1 0 2.852 17.322 0.0166
0 1 1 3.852 47.089 0.0451
1 0 0 3.327 27.841 0.0267
1 0 1 4.327 75.680 0.0725
1 1 0 3.179 24.011 0.0230
1 1 1 4.179 65.270 0.0625

1 1 0

0 0 0 2 7.389 0.0071

0.1468

0 0 1 3 20.086 0.0192
0 1 0 2.121 8.341 0.0080
0 1 1 3.121 22.674 0.0217
1 0 0 2.483 11.973 0.0115
1 0 1 3.483 32.545 0.0312
1 1 0 2.604 13.515 0.0129
1 1 1 3.604 36.739 0.0352

1 0 1

0 0 0 2 7.389 0.0071

0.1468

0 0 1 3 20.086 0.0192
0 1 0 2.121 8.341 0.0080
0 1 1 3.121 22.674 0.0217
1 0 0 2.483 11.973 0.0115
1 0 1 3.483 32.545 0.0312
1 1 0 2.604 13.515 0.0129
1 1 1 3.604 36.739 0.0352

0 1 1

0 0 0 2 7.389 0.0071

0.1468

0 0 1 3 20.086 0.0192
0 1 0 2.121 8.341 0.0080
0 1 1 3.121 22.674 0.0217
1 0 0 2.483 11.973 0.0115
1 0 1 3.483 32.545 0.0312
1 1 0 2.604 13.515 0.0129
1 1 1 3.604 36.739 0.0352

0 1 0

0 0 0 1 2.718 0.0026

0.0694

0 0 1 2 7.389 0.0071
0 1 0 1.390 4.016 0.0038
0 1 1 2.390 10.918 0.0105
1 0 0 1.639 5.149 0.0049
1 0 1 2.639 13.996 0.0134
1 1 0 2.029 7.606 0.0073
1 1 1 3.029 20.679 0.0198

1 0 0

0 0 0 1 2.718 0.0026

0.0694

0 0 1 2 7.389 0.0071
0 1 0 1.390 4.016 0.0038
0 1 1 2.390 10.918 0.0105
1 0 0 1.639 5.149 0.0049
1 0 1 2.639 13.996 0.0134
1 1 0 2.029 7.606 0.0073
1 1 1 3.029 20.679 0.0198

0 0 1

0 0 0 1 2.718 0.0026

0.0694

0 0 1 2 7.389 0.0071
0 1 0 1.390 4.016 0.0038
0 1 1 2.390 10.918 0.0105
1 0 0 1.639 5.149 0.0049
1 0 1 2.639 13.996 0.0134
1 1 0 2.029 7.606 0.0073
1 1 1 3.029 20.679 0.0198

0 0 0

0 0 0 0 1 0.0010

0.0336

0 0 1 1 2.718 0.0026
0 1 0 0.066 1.934 0.0019
0 1 1 1.660 5.257 0.0050
1 0 0 0.795 2.214 0.0021
1 0 1 1.795 6.019 0.0058
1 1 0 1.454 4.282 0.0041
1 1 1 2.454 11.640 0.0111

Table IV: Joint configuration probabilities

