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ABSTRACT
Extracting association rules helps data owners to unveil hidden pat-
terns from their data for the purpose of analyzing and predicting
the behavior of their clients. However, mining association rules in a
distributed environment is not a trivial task due to privacy concerns.
Data owners are interested in collaborating with each other to mine
association rules on a global level; however, they are concerned
that sensitive information related to the individuals involved in their
database might get compromised during the mining process. In this
paper, we formulate and address the problem of answering associa-
tion rules queries in a distributed environment such that the mining
process is confidential and the results are differentially private. We
propose a privacy-preserving distributed association rules mining
approach, named DARM, where global strong association rules are
determined in a confidential way, and the results returned satisfy ε-
differential privacy. We conduct our experiments on real-life data,
and show that our approach can efficiently answer association rules
queries and is scalable with increasing data records.

Categories and Subject Descriptors
H.2.7 [Database Management]: Database Administration—Se-
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Figure 1: Marketing campaign scenario: A marketing company interested
in knowing the income per age to launch its advertising campaign.

curity, integrity, and protection; H.2.8 [Database Management]:
Database Applications—Data mining; H.2.4 [Database Manage-
ment]: Systems—Distributed databases, Query processing

General Terms
Privacy-preserving Data Mining, Database Management

Keywords
Association Rules, Differential Privacy, Data Mining

1. INTRODUCTION
Due to the rapid evolution of data collection and storage technolo-
gies, extracting knowledge and hidden patterns from stored data
has become a major necessity for individuals, companies, and gov-
ernment agencies. However, applying data mining techniques to
extract information is considered a challenge when the data is dis-
tributed over multiple owners, and each data owner is concerned
about the privacy of individuals in his data. For example, compa-
nies might be interested in obtaining information concerning the fi-
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nancial status of individuals from different banks. Privacy-Preserving
Data Mining (PPDM) techniques has been utilized in the context
of distributed computing to protect the confidentiality of the data
of each provider, while still enabling the providers to perform data
mining tasks, such as frequent itemsets mining and association rules
mining, on the distributed data.

This paper introduces a privacy-preserving approach for distributed
association rules mining. Three types of participants are assumed
in the proposed model: data providers, master miner, and data con-
sumers. We assume that the data being shared is in the form of a
relational table that is horizontally partitioned into sub-tables, each
of which is hosted by one data provider. Our framework preserve
the privacy of each provider’s data while also protecting the query
confidentiality against the data providers. The master miner is a
central web service platform that perform the mining process based
on data consumers’ queries and return to each user the strong as-
sociation rules satisfying her request. The data consumer in our
model is a user (individual or company) interested in mining the
data to obtain association rules information.

Example 1. Assume that two survey companies (data providers)
own information about different set of individuals in the same re-
gion. Also assume that a marketing company (data consumer) is
interested in obtaining information regarding income-per-age in
that geographic area for the purpose of launching a targeted ad-
vertising campaign, as depicted in Fig. 1. For that purpose, the
marketing company sends an association rules query to the master
miner that includes the following: q = {γ = 60%, α = 80%, P=
(Age = [18,23], Income = ∗)}, where γ is the minimum support
threshold, α is the minimum confidence threshold, and P is the
set of attribute/value pair the marketing company is interested in.
The master miner performs the mining process with the two survey
companies and returns to the marketing company the strong rule:
Age = [18,23]→ Income = [20k−35k].

The challenges of developing such a model are summarized as fol-
lows. The first challenge is the privacy of the data, i.e., while fetch-
ing the information, one data provider should not learn about the
data of any other provider. The second challenge is the quality of
the generated rules. The rules must delivered in a way that satisfies
the data consumer’s need and responds to his request by performing
the mining task in a global manner (i.e., collecting information in
a global manner from multiple data providers specialized in identi-
cal fields to enhance the quality of the generated rules). The third
challenge is preventing the data consumer from inferring sensitive
information about the individuals involved in the database by ana-
lyzing the generated association rules.

The contributions of this paper can be summarized as follows:

• Contribution #1: We propose a comprehensive privacy-preserving
approach, named DARM, for answering association rules queries
in a distributed environment, with the goal of preserving both
data privacy and query confidentiality.

• Contribution #2: Our proposed approach protects all providers
against inference attacks from data consumers by guarantee-
ing that the returned association rules to the data consumer
satisfy ε-differential privacy. To the best of our knowledge,

this is the first work that provides the strong guarantee of
differentially private association rules.

• Contribution #3: The proposed method preserves the pri-
vacy of the mined data by preventing each data provider from
learning sensitive information about other data providers dur-
ing the mining process.

• Contribution #4: The confidentiality of the data consumer’s
query is protected against the data providers such that the
master miner is able to mine the association rules without
revealing the query to the data providers.

• Contribution #5: We conduct performance evaluation on
real-life data to study the scalability and efficiency of our
proposed model. Experimental results reveal that our ap-
proach is scalable, i.e., it grows sub-linearly with the linear
increase in the number of data records. As for efficiency, we
also show that our approach is efficient with regard to the
number of attributes in the data consumer’s query.

2. RELATED WORK
Several approaches [1][7][18][5][3][19] are proposed in the litera-
ture to study the problem of mining association rules in distributed
and parallel manners, where the data is partitioned across several
nodes. However, these approaches are mostly interested in increas-
ing the efficiency of the mining process; ignoring thus the privacy
concerns that may arise from building such global mining model.

On the other hand, several approaches consider the privacy con-
cerns that may arise from mining the data globally [14][22][25][24]
[11]. Kantarcioglu and Clifton [14] and Vaidya and Clifton [22]
propose a distributed association rules mining over horizontally
partitioned data and vertically partitioned data, respectively. The
authors take into account protecting the privacy of the individuals
by preventing each data provider from inferring information from
other providers. However, these approaches do not protect against
possible inference attacks by data consumers. On the contrary, our
approach prevents data providers from being able to learn any in-
formation from any data provider, as well as protects data providers
from inference attacks by ensuring that the result of each query
from a data consumer satisfies ε-differential privacy. In [24], the
authors propose an encryption scheme based on substitution cipher
techniques to preserve the privacy of the transactional data used
for outsourcing association rule mining. However, they consider
that the association rules mining will be centralized on a single
provider, which has to receive the different databases and perform
all the association rules mining tasks. In contrast, to avoid such
overhead imposed on a single provider, the master miner in our
model mines the strong association rules on a global level by send-
ing count queries to the data providers while avoiding to store any
part of the data locally. Giannotti et al. [11] tackle the problem
of outsourcing the association rule mining task within a corporate
privacy-preserving framework by proposing an encryption scheme
based on substitution ciphers called RobFrugal. In [25], the au-
thors propose a privacy-preserving model that merges the secure
multiparty computation and differential privacy to preserve the pri-
vacy of the statistical operations (i.e., count and aggregate count).
However, it is not clear how this approach can be applied to handle
association rules mining given that division operations must be per-
formed between parties in secure way in order to validate the min-
imum support and confidence. Note that the approaches proposed
in [14][22][24][11] rely on encryption to achieve privacy between
data providers. However, and besides inefficiency, a recent study



Table 1: Comparative evaluation of main features in related privacy-preserving data mining and association rules approaches.

Approach
Data Privacy Model Mining Model

Single
Provider

Multiple Providers
Differential
Privacy

Partition-based
Privacy

PPDM
PPDPHorizontal

Partitioning
Vertical
Partitioning

Association
Rules Other

Anitha et al. [3]   
Kantarcioglu and Clifton [14]   
Vaidya and Clifton [22]   
Zhang et al. [25]    
Wong et al. [24], Giannotti et al. [11]   
Arafati et al. [4], Gurunathan et al. [12]    

Our proposed solution    

shows that most encryption schemes are insufficient to guarantee
data privacy and confidentiality, as the protocol on which they are
based, namely precise query protocol (PQP), is vulnerable to at-
tribute values inference [8].

Furthermore, several approaches [21][4][12][12] were proposed to
preserve the privacy of the data in a data mashup scenario. In
contrary to our model which considers the privacy-preserving data
mining (PPDM) [23], these approaches are designed to support
privacy-preserving data publishing (PPDP) [9] where they assume
that the output data itself will be shared among the different parties.

Table 1 summarizes the features of the representative related works,
including our proposed solution.

3. PROBLEM FORMULATION
This section formulates the research problem addressed in this pa-
per. First, we give an overview on the problem of mining associa-
tion rules in a distributed environment while preserving the privacy
of both the data and query in Section 3.1. Next, we define the in-
put components used by our approach in Section 3.2. Then, the
trust and adversary model is described in Section 3.3. Finally, the
problem statement is presented in Section 3.4.

3.1 Problem Overview
In this paper, we design a distributed association rules mining ap-
proach consisting of three party types: data providers, data con-
sumers, and master miner. The data provider is a data owner in-
terested in making its data available for data mining tasks. Each
provider’s data contains the same type of information (attributes)
about different set of individuals. The data consumer represents the
user who is interested in obtaining strong association rules concern-
ing certain attributes from the distributed data. The master miner is
a broker trusted by both data providers and data consumers. When
the master miner receives an association rules query from the data
consumer, it performs the mining process in a privacy-preserving
manner with the data providers, and then delivers the strong asso-
ciation rules satisfying ε-differential privacy to the data consumer.

3.2 System Inputs
The proposed distributed association rules mining system takes two
inputs: (1) association rules queries from data consumers, and (2)
set of anonymized data, each of which is hosted by one data provider.
In the following, we describe each of these inputs in details.

3.2.1 Association Rules Queries
To obtain the set of strong association rules R from the distributed
data, the data consumer submits a query request q to the master
miner in which he specifies the minimum support threshold γ , the

minimum confidence threshold α , and a set of predicates P. γ rep-
resents the minimum acceptable global support level for the rules,
i.e., for each association rule ri ∈ R, Support(ri)≥ γ . α represents
the minimum acceptable global confidence level for the rules, i.e.,
for each association rule ri ∈ R,Con f idence(ri)≥ α . P is a set of
predicatesP= {P1, ...,Pm}where each predicatePi =(A Op val)
is a single criterion such that A corresponds to an attribute name
from the distributed data, Op is a comparison operator such that
Op ∈ {>,≥,<,≤,=}, and operand val is a value from the domain
of attribute A. If A is a categorical attribute, the data consumer has
to specify the exact value, i.e., city = “Canada”. However, if A is
a numerical attribute, then the data consumer has the choice of ei-
ther specifying the exact value (i.e., age= 30) or specifying a range
(i.e., age = [30,40] or age≥ 50).

3.2.2 ε-differentially Private Data
We assume that the data in DRAM is horizontally partitioned into
sub-tables each of which is hosted by one data provider. This means
that each data provider’s data contains the same type of attribute
information on different set of individuals. Each data provider
DPi holds a relational database Di consisting of quasi-identifier
attributes AI , predictor attributes AP, and class attributes AClass

such that: Di = (AI ,AP,AClass). To protect its data from infer-
ence attacks, each data provider DPi applies ε-differential privacy
scheme [16] on its data Di data and generates an anonymized data
D̂i. There are many privacy models with different privacy guar-
antees, such as k-anonymity [20], `-diversity [15], and LKC [17].
However, we choose to the ε-differential privacy model because it
provides strong assurances against adversaries with arbitrary back-
ground knowledge.

3.3 Adversary Model
We assume that all parties in DARM operate under the semi-honest
adversary model [13]. That is, each party is expected to follow
the protocol correctly; however, it is curious and might try to infer
sensitive information about the other parties. We assume that there
is an authenticated secure channel between the data consumer and
master miner, and another one between the master miner and each
data provider. We also assume that a polynomial size circuit bounds
the computational power of each adversary.

3.4 Problem Statement
Given relational data D that is horizontally partitioned into n parti-
tions: {D1, ...,Dn}, the objective is to design a privacy-preserving
model for answering association rules queries in a distributed en-
vironment. The model must achieve three objectives: (1) to pre-
vent each data provider from learning sensitive information about
other data providers during the mining process, (2) to protect all
providers against inference attacks from the data consumers, and



(3) to preserve the confidentiality of each data consumer’s query
against the data providers.

4. SOLUTION: DARM
4.1 Solution Overview
Our solution is a Distributed Association Rules Mining (DARM)
model that aims at generating and delivering strong and meaningful
rules to the data consumer, while preserving privacy of the data
and the confidentiality of the queries. Our proposed approach is
composed of three steps:

• Step 1 - Data Anonymization: The data providers anonymize
their own data using ε-differential privacy scheme to protect
against table linkage and probabilistic attacks.

• Step 2 - Frequent Itemsets Generation: The master miner
submits count queries to the data providers corresponding
to the attributes specified in the data consumer’s query, and
generates the frequent itemsets of different length satisfying
the desired minimum support threshold γ .

• Step 3 - Association Rules Generation: After generating
all related frequent itemsets, the master miner submits count
queries to the data providers that enable him to generates the
set of strong association rules satisfying the minimum confi-
dence threshold α specified by the data consumer.

4.2 Model Architecture
One of the main characteristics of Web services solution is the
Service-oriented architecture (SOA) it offers. In fact, Web services
rely on the assumption that each functionality will be exposed as
a service, which makes these services loosely-coupled as they are
defined, developed, and managed by different parties [2]. Fig. 2
depicts the architecture of our proposed model, which is based on
SOA. According to this architecture, the data consumer who learns
the details of the services (i.e., attributes, location, etc) offered by
the master miner by means of the WSDL file, uses these details
to construct a SOAP message containing the specifications of the
request and sends it to the master miner via HTTP protocol. There-
after, count queries are sent by the master miner to the dat providers
by means of SOAP messages. The providers use the Data Manager
to query their databases, and then send back the counts to the master
miner also as SOAP messages. The master miner uses its Computa-
tion Manager to compute and compare the support and confidence
levels. Finally, the response (strong association rules) is delivered
from the master to the data consumer as SOAP message via HTTP
protocol.

Table 2: Original Table

Job Age Class
Teacher 25 Female
Lawyer 51 Male
Painter 48 Female
Singer 20 Female
Dancer 32 Male
Lawyer 45 Male
Writer 39 Female
Doctor 58 Female

Table 3: Root Partition

Job Age Sex Count
Any Job (20-58) 3M5F 8

4.3 Data Anonymization
In this step, the data providers use the ε-differential algorithm called
DiffGen [16] to anonymize their data and provide protection against
linkage and inference attacks. By using ε-differential, the data
owner makes sure that the regenerated data table provides privacy
guarantee while being insensitive to any specific record. The ε-
differential privacy model [14] aims at protecting against table link-
age and probabilistic attacks by ensuring that the probability distri-
bution on the published data is the same regardless of whether or
not an individual record exists in the data. The main idea of the
DiffGen [16] algorithm is to anonymize the raw data input follow-
ing a sequence of specializations starting from the topmost general
state. Specialization refers to creating “partitions”, each of which
represents an equivalence class. DiffGen determines the attribute
to specialize on according either to “InfoGain” or to “Max” utility
functions. Basically, the anonymization process can be divided into
three main parts: (1) selecting a candidate attribute for specializa-
tion, (2) determining an split value parameter, and (3) publishing
the noisy counts. For example, for a raw data as shown on Table 2,
the algorithm creates a root partition that contains all records as
shown in Table 3. Then, assume that the first specialization will be
based on the Job attributes. Thus, Any_Job is splitted into profes-
sional and artist as depicted in Tables 4 and 5. For second special-
ization, we could decide on splitting the age, and then specialize
the table based on gender. Finally, the algorithm delivers the equiv-
alence groups of each leaf partition along with their noisy counts,
as shown in Table 6.

Table 4: First Partition

Job Age Sex Count
Professional (25-58) 2M2F 4

Table 5: Second Partition

Job Age Sex Count
Artist (20-48) 1M3F 4

Table 6: Leaf Partition

Job Age Sex NoisyCount
Artist (20-48) F 3+1=4
Artist (20-48) M 1-1=0

4.4 Frequent Itemsets Generation
In this step, the master miner receives the data consumer’s query,
requests the support counts of all the attributes the data consumer is
interested in from the different slaves, and generates all the possible
frequent itemsets of different lengths subject to the minimum sup-
port threshold γ specified in the query. As depicted by Algorithm 1,
the length-1 frequent itemsets are initially generated after obtaining
the support counts from the providers (line 8). Then, candidates are
generated from this set of frequent itemsets (line 10). The master
miner requests the support counts of these candidates from the dif-
ferent data providers (line 11). According to these support counts,
the support level of each candidate is calculated (line 12). Then,
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Figure 2: Model Architecture: The Service-oriented architecture (SOA) is used as a mean of communication among different parties

if the support level of the candidate respects the minimum support
threshold γ specified by the data consumer, then this candidate is
considered as frequent itemset (lines 13-15). This process is re-
peated until no further frequent itemsets can be found.

Algorithm 1: Frequent Itemsets Generation
1: Input: minimum support threshold γ

2: Input: set of attributes A
3: Input: total number of rows of all the databases t
4: Input: Candidate itemset Ck of length k
5: Output: frequent itemsets Fk of length k
6: procedure FREQUENTITEMSETSGENERATION
7: Ck = /0
8: F1={frequent items}
9: for (k = 1;Fk! = /0;k++) do

10: Ck+1 = candidates generated from Fk
11: request support count s(Ck+1) from all providers
12: calculate Support(Ck+1) = s(Ck+1)/t
13: if Support(Ck+1)≥ γ

14: Fk = Fk ∪Ck+1
15: end if
16: end for
17: return

⋃
k Fk

18: end procedure

4.5 Association Rules Generation
Now that the frequent itemsets are known, the master miner gener-
ates all the possible combinations of the k-length (k > 1) frequent
itemsets that may constitute association rules. It then sends these
combinations to the data providers which, in their turn, calculate
and send back the support counts of these combinations to the mas-
ter (e.g., {Zip Code = H3M0E1, age ∈ [20,30]} : 3). The master
miner measures the strength of the received rules subject to the min-
imum confidence threshold α specified in the data consumer query.
Finally, only the strong rules are delivered to the data consumer.

As depicted in Algorithm 2, the master miner generates all the
possible combinations of the length-k (k > 1) frequent itemsets re-
turned by Algorithm 1 (line 7). Then, the master requests the sup-
port counts for each combination from the different providers (line
8). Based on these support counts and the support counts obtained
in the previous iterations of Algorithm 1, the master computes the
confidence level for each combination (line 9). Now, if the confi-
dence level of the combination respects α , then this combination is
considered as strong association rule (lines 10-13). Finally, these
strong association rules are returned to the data consumer in re-
sponse to his request (line 14).

Algorithm 2: Association Rules Generation
1: Input: frequent itemsets F divided into Li and Ri
2: Input: set of left-hand-side frequent itemsets Li
3: Input: set of right-hand-side frequent itemsets Ri
4: Input: minimum confidence threshold α

5: Output: set of strong association rules R
6: procedure ASSOCIATIONRULESGENERATION
7: for each combination c ∈ Li−> Ri do
8: request support count s(c) from all providers
9: calculate Con f idence(c) = s(c)/s(Li)

10: if Con f idence(c)≥ α

11: R = R∪ c
12: end if
13: end for
14: return R
15: end procedure

5. PERFORMANCE EVALUATION
In this section, we evaluate the performance of our proposed ap-
proach. First, we explain the implementation details and then we
present the experimental results involving the efficiency of the ap-
proach with regard to the number of attributes specified in the data
consumer query, the scalability of the overall approach with respect
to the number of data records, and the sensitivity to the number of



specializations.

5.1 Implementation and Setup
We implement our approach in the 64-bit Windows 7 environment
on a machine equipped with an Intel Core i7 3.80 GHz Processor
and 8 GB DRAM. Oracle 11g is used as programming language
to implement the different algorithms of the approach. The pro-
gram is designed in a dynamic manner to support different datasets
and different query inputs. The Apriori algorithm is used for fre-
quent itemsets generation. As a real-life data, we use the adult [6]
data set, which contains 45,222 census records divided into six nu-
merical attributes, eight categorical attributes, and a class attribute
with two levels: “≤ 50K” and “> 50K”. More details about the at-
tributes descriptions can be found in [10]. The number of attributes
in the data consumer query can range from 2 (since no association
rules can be generated from a single attribute) to 14 (the maximum
number of attributes), and the average number of attributes in a
query is 8. The data is horizontally partitioned over three providers
in an arbitrary manner, where the first provider hosts 45% of the
data, the second hosts 35%, and the third holds 20%. The idea be-
hind making such unequal distribution is to mimic a real-life sce-
nario, where providers host usually distinct number of data records.
We generate ε-differentially private records using the DiffGen algo-
rithm, where the privacy budget ε = 1, and the number of special-
izations is set to 8.

5.2 Experimental Results
5.2.1 Efficiency

To determine the efficiency of our approach, we measure the pro-
cessing time of the different algorithms involved in the approach
with regard to the number of attributes in the data consumer’s query.
The processing time is divided into two subphases: frequent item-
sets generation and association rules mining. The number of spe-
cializations used is 8 and the number of attributes varies from 0 to
12. Fig. 3 reveals that the most dominant phase in our approach
is generating frequent itemsets, while mining association rules has
less impact on the processing time. It shows also that the total
processing runtime keeps increasing linearly as the number of at-
tributes increases. Practically, the total runtime increases from 0.1
sec to 5.1 sec when the number of attributes per query increases
from 3 to 12 for frequent itemsets generation, and increases from
0.1 sec to 2.4 sec when the number of attributes per query increases
from 3 to 12 for association rules mining. We observe that our pro-
posed solution is sensitive to the number of attributes in the associa-
tion rule query because adding more attributes to a query increases
the possible candidates for the frequent itemsets generation algo-
rithm and increases hence the possible number of combinations for
the association rules mining algorithm.

5.2.2 Scalability
In order to study the scalability of our approach, we measure the
query processing runtime with respect to the increase in the number
of data records, where the number of data records linearly increases
from 20,000 to 100,000 and the number of specialization is set
to 8. Fig. 4 reveals that the total processing runtime increases
linearly with the increase in the number of data records. Practically,
the processing runtime increases from 1.8 sec for 20,000 records
to 2.9 sec for 100,000 records in the frequent itemsets generation
algorithm. Similarly, the processing runtime grows from 0.9 sec
for 20,000 records to 2 sec for 100,000 records in the association
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rules mining algorithm. Therefore, we conclude that our proposed
approach is scalable w.r.t. the data size.
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5.2.3 Efficiency w.r.t. nSpecializations
In the differential privacy algorithm DiffGen [16], nSpecializations
is the number of specializations parameter that determines when
the algorithm should terminate. The higher the nSpecializations
value is, the more partitions (anonymized records) are generated,
which obviously has an impact on the runtime. Our goal here is to
determine the efficiency of our solution with the linear increase of
number of specializations. The number of raw data records used is
40,000, the minimum support threshold is 30%, and the minimum
confidence threshold is 40%. Similar to the efficiency test, Fig. 5
reveals that the most dominant phase in our approach is generating
frequent itemsets, while mining association rules has less impact
on the processing time. It shows also that the total processing run-
time slightly increases as the number of specializations increases
linearly, up to 14. However, the total runtime increases from 6.4
sec to 12 sec when the number of specializations increases from



14 to 16. We therefore conclude that our proposed solution is ef-
ficient w.r.t. the number of specialization nSpecializations, when
nSpecializations is less or equal to 14.
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6. CONCLUSIONS
In this paper, we propose a comprehensive privacy-preserving ap-
proach for answering association rules queries in a distributed en-
vironment, with the goal of preserving both data privacy and query
confidentiality. The proposed approach (1) protects all providers
against inference attacks from data consumers by guaranteeing that
the returned association rules to the data consumer satisfy ε-differential
privacy, (2) preserves the privacy of the mined data by preventing
each data provider from learning sensitive information about other
data providers during the mining process, and (3) protects the con-
fidentiality of the data consumer’s query against the data providers
such that the master miner is able to mine the association rules with-
out revealing the query to the data providers. Experimental results
reveal that our approach is efficient w.r.t. the increase in the num-
ber of attributes in the data consumer’s query, and scalable w.r.t.
the number of records in the dataset.
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