
ACCORD: A Scalable Multi-Leader Consensus
Protocol for Healthcare Blockchain

Golam Dastoger Bashar*
Department of Computer Science

Boise State University
golambashar@u.boisestate.edu

Joshua Holmes*
Department of Computer Science

Boise State University
joshholmes@u.boisestate.edu

Gaby G. Dagher
Department of Computer Science

Boise State University
gabydagher@boisestate.edu

Abstract—Blockchain is an emerging distributed and decen-
tralized technology that promises to revolutionize the healthcare
sector by securely storing and maintaining incorruptible elec-
tronic health record data. Consensus protocols are at the core
of blockchain technology. They establish security and integrity
in the system by ensuring that the majority of miners are in
agreement on all transactions and blocks added to the distributed
ledger. While many consensus protocols have been proposed,
most of them require heavy computation and are not scalable. In
this work, we propose a novel permissioned consensus protocol,
named ACCORD, a multi-leader (quorum-based) protocol that
achieves fork-resistance, robustness, and scalability.

To achieve this, ACCORD consists of three distinct compo-
nents: (1) an asynchronous quorum selection procedure to desig-
nate the creators of future blocks, (2) a block creation protocol
run by the quorum to prevent omissions in the presence of honest
quorum members, and (3) a decentralized arbitration protocol
to ensure consensus by voting. Additionally, we implemented the
protocol and conducted experiments to demonstrate scalability,
robustness, and fairness.

I. INTRODUCTION

In Electronic Health Record (EHR) systems, all health-
related records are digitized and independently stored in the
hospital’s local database. However, a patient may visit more
than one medical institution for different needs or may be
transferred from one institution to another. The procedure of
forwarding the data is often difficult and time-consuming.
A survey in 2018 found that 18% of patients who visited
a healthcare provider in the US reported that they had to
bring test results to an appointment personally, and 5% needed
to have a test or procedure repeated due to the unavailabil-
ity of prior results [1]. According to the US ONC Health
IT [2], in 2019, roughly half of US hospitals were considered
interoperable, meaning they are able to efficiently transfer
medical records between each other. As the interoperability
of hospitals improves, the security of patient records needs to
be maintained, as they are valuable targets for cyber attackers.

Hospitals have many methods of storing medical informa-
tion. According to the CDC, in 2017, approximately 85% of
hospitals use some form of EHR1. There is no standard for
EHR system, so hospitals apply widely varied systems that
manage data in significantly different ways [3]. This leads to

* These authors contributed equally.
1https://www.cdc.gov/nchs/data/nehrs/2017_NEHRS_Web_Table_EHR_

State.pdf

patient confusion as to where their data is and how to access
it [4]. The sharing of EHRs over multiple institutions is a
complicated process [5]. This results in poor communication
between hospitals. From the patient’s point of view, this leads
to repeated tests and procedures [6][7], which not only inflates
their medical bills but also cause negative patient outcomes.

In a blockchain-based platform, patient records can be rep-
resented as a single list of consecutive care events, regardless
of where these events occurred [8]. In March 2020, the US
Department of Health and Human Services (HHS) created
a policy such that patients should be given control of their
personal health data [9]. Therefore, we see it as desirable for
the patient to have direct control over access to their EHRs.
With the help of blockchain technology, patients can be given
control of their health data.

A public permissioned blockchain is a potential solution
to the challenges of EHR management. We define a public
permissioned blockchain as a blockchain in which the ledger is
public, but the consensus protocol is permissioned. This allows
for public verifiability while still allowing for a more efficient
consensus mechanism. For a blockchain to be functional and
secure, its honest nodes (e.g., hospitals) must not conflict on
the distributed ledger’s current state. This is achieved through
a consensus protocol. Consensus protocols are responsible for
ensuring that the nodes in the network agree that collections
of records (called blocks) are valid and appropriately added to
the distributed ledger. These blocks of digital records are im-
mutable and do not require trust [10]. Note that these records
can be encrypted and anonymized to maintain patient privacy.
A secure consensus protocol allows hospitals to be assured that
their ledger is identical to other hospitals’ ledgers, preventing
omissions and tampering. As there are around 9000 hospitals
and clinics in US2 and as many as 30 million transactions
created per day [11], the speed and efficiency of the consensus
protocol are important in a healthcare blockchain.

Two of the most common consensus protocols in blockchain
are Proof of Work (PoW) and Proof of Stake (PoS). PoW [12]
is the consensus protocol used by the seminal work in
blockchain. It allows for a completely permissionless mining
system, which is desirable in cryptocurrency. PoW is an
extremely energy inefficient protocol, as the miners race to

2https://www.aha.org/statistics/fast-facts-us-hospitals

This is the preprint version. Please see
IEEE for the final official version.

https://www.cdc.gov/nchs/data/nehrs/2017_NEHRS_Web_Table_EHR_State.pdf
https://www.cdc.gov/nchs/data/nehrs/2017_NEHRS_Web_Table_EHR_State.pdf
https://www.aha.org/statistics/fast-facts-us-hospitals
GABYDAGHER
Rectangle

The transactions propagate across the P2P

network

The quorum consolidates their

received transactions to form a

block

The quorum signs the block and

broadcasts it to the P2P

network

The network votes to accept the blockThe new block is then added to the blockchain

Send transactions

to network

Our Contributions: ACCROD Protocol

Figure 1: A high level architectural diagram of the system, showing the path a transaction takes to be added to the blockchain.

solve a puzzle to gain the reward that comes with the creation
of a block. Security is an issue with PoW, as it can fail if
25% of the computing power is controlled by a malicious
party [13][14]. Alternatively, in PoS, there is no need to solve
a hard puzzle, as validators can validate the next block. A
miner’s ability to mine a block is proportional to the stake
they have in the system. While this is more energy-efficient
than PoW, PoS depends on the miners having a stake. In a
cryptocurrency setting, a participant’s stake can be determined
or purchased with the currency being exchanged. In other
contexts, the determination stake becomes unclear.

An alternative paradigm is known as a permissioned con-
sensus protocol, where miners must be certified to mine. A
popular permissioned consensus protocol that has been used
in the healthcare sector is Practical Byzantine Fault Tolerance
(PBFT) [15]. Currently, PBFT is used in some Hyperledger
variants [16]. PBFT works efficiently for a small network
size. However, due to communication overhead, PBFT does
not scale well. This is because each node must communicate
with all other nodes at every step to keep the network secure.
As the number of nodes n and messages m increase, the
communication burden of this system becomes untenable, at
O(mn2) [17]. The system can continue functioning properly
with up to 33% corruption of the mining network.

According to a recent survey [16], the most commonly used
consensus protocols in healthcare publications are PoW (21%)
and PBFT (15%). Unfortunately, this survey found that 41%
did not explicitly state which consensus protocol they use or
recommend for their system. Due to the large scale of the
healthcare system, strict privacy requirements, and importance
of the data, the choice of consensus protocol is important.

Petersen et al. [8] created a consensus protocol for a health-
care blockchain. It attempts to create consensus by having
all participating nodes agree on a block with a coordinator.
However, the leader selection protocol appears to be open
to manipulation and requires a network-wide synchronization.
The leader is also capable of ignoring a hospital’s transactions.

Three popular leader based consensus protocols are Paxos
[18], PBFT [19], and Raft [20]. These systems provide mech-
anisms to select a leader and allow them to either create or

coordinate the creation of a block, which is far more efficient
than PoW. However, a single leader is often capable of manip-
ulating the block they are responsible for. Depending on the
system, this could allow an adversary to manipulate their block
to their advantage. Manipulation techniques could include
omission of transactions and manipulation of randomness.

In MedBlock [21], Fan et al. designed a system that attempts
to solve the communication overhead of PBFT with large
networks. They created a form of delegated PBFT, where
hospitals are divided into regions. Each region elects a rep-
resentative to represent them in the larger network. These
representatives execute PBFT among themselves to reduce
network congestion and the higher energy costs this congestion
entails. However, this opens smaller clinics or hospitals to
malicious action. If the majority of a region wishes to suppress
a node, there is no obvious recourse within the protocol other
than manual intervention (e.g., moving the affected nodes out
of the region or suspending the malicious nodes).

In this paper, we propose a scalable consensus protocol,
named ACCORD that is robust and avoids conflicts over forks.
The protocol works as follows: After a transaction is forwarded
to the network, ACCORD utilizes a group of leaders called
a quorum3 to evenly distribute the responsibilities of a single
leader to multiple quorum members. We ensure the correctness
of the block by a threshold of the quorum members agreeing
on the transactions before proposing their block. For this block
to be accepted by the network, it must be asynchronously
signed by a majority of the nodes in the network before it
is added to the blockchain. Figure 1 is high level view of how
data is processed by ACCORD. The main characteristics of
the ACCORD protocol are as follows:

• Fork-Resistance4: In the presence of competing blocks,
if an honest node accepts a block, no other honest node
will accept any competing blocks. Either one block is
accepted or all are rejected.

• Robustness: In the event of a network outage, the protocol
can remain functional or recoverable down to a threshold

3Unrelated to Byzantine Quorums [22]
4Fork resistance is not immunity to forks.

of operable honest nodes.
• Scalability: The overhead of the protocol should increase

at a reasonable rate (e.g. linearly) as the number of nodes
and messages increases.

• Liveness: The protocol ensures a valid transaction will
appear in all honest node’s ledgers within a reasonable
period.

To ensure Liveness, the protocol must ensure that a new
block will be created by an honest quorum within a reasonable
period of time. It is important to note that blocks created by
malicious quorums are permissible (if they are valid), as long
as honest quorums also regularly create blocks.

In addition, ACCORD achieves fairness in miner selection.
ACCORD is fair because it ensures every miner is selected
with approximately the same frequency with a more even dis-
tribution than random selection. Though ACCORD is designed
to meet the needs of a healthcare blockchain, it can be used in
blockchain systems for other fields with similar requirements
(e.g. supply chain).

II. RELATED WORK

A permissioned blockchain is, by its very nature, more
centralized than a permissionless blockchain [23][24]. This
centralization allows the nodes in the consensus protocol to
have a comprehensive list of miners at all times, therefore
allowing the miners to run a more structured consensus
protocol. A common approach that becomes available with
a permissioned blockchain is the concept of selecting a leader
to create a block to reduce redundant block creation work
and reduce the number of competing blocks. There are many
examples of leader-based consensus protocols [21][18][19].
The mechanisms behind these protocols vary widely, but
they mostly include three major components: leader selection,
transaction acquisition, and block creation and distribution.
However, leader-based consensus protocols may encounter
problems, as malicious leaders may manipulate the contents of
their blocks to their advantage. Many leader-based protocols
have mitigations or solutions to this problem [19][21], but they
are often costly, requiring network-wide synchronizations [21].
Our design, ACCORD differs from these approaches since we
do not select a single leader. Instead, we divide the role of
leader evenly between a group of nodes to improve robustness
with an efficient protocol to select the leaders.

Healthcare is naturally centralized around hospitals and
requires a certain amount of trust that the data is created
correctly (e.g., we assume that hospitals run their tests hon-
estly and output the correct results). Hospitals also wish to
know whom they are treating. Therefore, a certain amount
of authentication and centralization is appropriate. Similar
to [5][21][25][26][27], our design requires an authentication
scheme to manage identity on the network.

Blockchain technology can be used to support many sectors
of the healthcare system. A major use case of blockchain in
healthcare is managing electronic health records (EHR), a.k.a,
personal health records (PHR). There are many examples of

work focusing on EHRs in blockchain [5][28][29][30] focus-
ing on secure electronic creation, storage, and management of
EHRs. Azaria et al. introduced MedRec [28], an Ethereum-
based EHR management system in which data permission
and operations are recorded in the blockchain. MedRec au-
thenticates participants, store hashes for data integrity, and
use smart contracts to interface with providers to view data.
MedRec aims to address issues like response time in data
access, interoperability, and better data quality for healthcare
research. On the other hand, Dubovitskaya et al. [5] introduced
a permissioned blockchain network that uses a cloud-based
EHR sharing system for cancer patients. Both of these works
have been prototyped but have not been implemented on a
large scale. In Ivan’s work [29], the author outlined a public
blockchain, where patient healthcare data is encrypted but
stored publicly, to create a blockchain-based EHR system.
In Zyskind et al. [30], the authors have described a decen-
tralized personal data management system that ensures users
governance their off-chain medical data (transfers ownership
of health records to patients).

In [31], the author’s proposed Mneme protocol uses two
consensus protocols: Proof-of-Context (PoC) and Proof-of-
Equivalence (PoE). PoC is used to store valid blocks of trans-
actions. Their work requires maintenance fees. The concept
behind the structure of PoC is to not accept a block as affirmed
before a significant percentage of the corroborators is aware
of its presence. PoC produces forks, however, so PoE runs
periodically and delivers regenesis blocks where a subset of
the corroborators is randomly chosen to combine the forks into
a unified block.

III. ADVERSARY MODEL

In our consensus protocol, ACCORD, there are five major
groups of parties: the transaction makers (e.g. doctors, hos-
pitals), the mining nodes, the membership authority, the P2P
nodes, and external observers.

We assume that the transaction makers honestly create the
confidential contents of transactions (e.g. the actual medical
records) and do not inappropriately distribute any data. How-
ever, we also assume that they are willing to modify the data
after the fact if given the opportunity. For example, a doctor
may attempt to alter lab results on the blockchain to avoid
a malpractice lawsuit. The transaction makers are not trusted
to produce the transactions themselves correctly. Therefore,
miners must ensure the transactions are valid before adding
them to the blockchain.

We assume any given mining node can act maliciously if
they are capable of causing damage to the network. Damage
to the network includes the following: causing a fork by
convincing separate honest nodes of conflicting states in the
blockchain, extended outages of the network, and extended pe-
riods of malicious control over the mining process. However,
if they are unable to cause damage to the network, they are

α Block Time
β The block lookback distance for quorum selection
δ Quorum threshhold for block creation
γ Priority list threshhold
q Size of quorum
σx Signature of party x
Bn Block at position n
Qn Quorum selected to mine Bn
Nx Node with designation x
SBx A skeleton block created by quorum member x

Table I: Notation Table

covert5. We generally assume that the last party that can apply
arbitrary control on a seed in our protocol controls the results
of that seed. Due to our quorum selection protocol (discussed
in algorithm 1), we assume that malicious nodes are capable
of creating blocks that produce the exact results that they want
from the quorum selection protocol without detection if they
have control over the block creation (i.e. a malicious quorum
can select specific future miners). We also assume that a simple
majority of the miners will behave honestly.

We assume the membership service authority (MSA) is
semi-honest. They act as a certificate authority and are not
privy to any private data on the blockchain. They will only
authorize new miners if they are qualified. Note that one of our
recommended options is that the membership service authority
is the whole mining pool, able to act with a simple majority
vote. This option leads to the semi-honesty of the membership
authority being reduced to the fact that a simple majority of the
mining nodes are honest. External observers and P2P nodes
that are not mining nodes are considered malicious. P2P nodes,
if allowed, require no permission to operate. They are willing
to spread disinformation and drop valid transactions if able.

IV. THE ACCORD PROTOCOL

A. Mining Nodes

The mining network N consists of mining nodes
{N1, N2, ..., Ni, ...N|N |}. Each mining node will have identi-
fying information on the blockchain, including a set of public
keys. These keys include a standard public key Ki in a discrete
log cryptosystem on group G6, and an additive signature key
Ai

7. These keys will be used for any signatures required.
Since all nodes are aware of the other nodes’ public keys, any
node can produce a shared secret key with any other without
the need for communication using the Diffie-Hellman Key
Exchange. The credentials of all mining nodes are certified
by the MSA.

B. Membership Service Authority

Permissioned blockchains differ from permissionless as only
authorized nodes are allowed to participate in the mining
process. This type of blockchain requires some degree of

5A covert adversary may act maliciously, but are unwilling leave evidence
of their malicious action. Their unwillingness to be caught could be due to
pressures applied to the party outside the protocol.

6Or any cryptosystem that supports the process in Section IV-I
7Ki and Ai may be equal if they are from the same cryptographic scheme.

centralization to control its membership. This control is given
to the membership service authority (MSA). Before a party
can join the network, they must contact the MSA to receive
certification. The MSA is responsible for verifying a candi-
date’s credentials and, if valid, certifying the candidate’s public
keys. The validity of a candidate’s credentials is determined by
factors outside the blockchain (e.g., their status as a hospital).

The MSA acts as a certificate authority (CA) within the
blockchain. The MSA certifies a node’s public key by cre-
ating a transaction to be added to the blockchain. Once the
transaction is added to the blockchain, the new node will be
eligible to mine and perform actions on the blockchain after β
blocks to ensure that the addition of the node does not allow
manipulation of the miner selection process. β is defined in
Section IV-E. Once the node’s key is certified, they will use
their appropriate key to create any signatures required by the
mining process. If a node requires their key to be changed, the
MSA can certify new keys by creating a transaction. If a node
is caught acting maliciously or wishes to withdraw from the
network, the MSA can release a transaction decertifying the
node’s public key. With this approach, the network can easily
come to a consensus as to the complete list of valid miners
for each block simply by analyzing the blockchain.

There is no requirement that the MSA be a single party or
external to the mining pool. The MSA could be a consortium
of parties from within and outside of the network. The MSA
could even be the entire mining pool. By distributing the
role of MSA across multiple parties, it reduces the required
level of trust in any given party. If the MSA is entire the
mining pool, where an MSA transaction is valid if signed by
a majority of the mining pool, then the trust of the MSA is
reduced to the same level of trust that exists within the mining
pool. Authentication protocols between MSA and nodes (i.e.,
determining valid credentials) are not investigated in this work,
as it is beyond our scope of this paper.

C. Data Propagation

Our system uses a P2P network to transfer information
across the network. This information includes transactions,
blocks, and votes. A node that receives a valid transaction
that has not appeared in a block (an unconfirmed transaction)
will add this transaction to their mempool. We assume that the
P2P network operates correctly with up to 50% corruption of
the mining network. Nodes will finish propagating messages
across the network in less than target block time α. However,
it is not guaranteed that every node will receive every message
that propagates, as some nodes may be offline or packets may
be lost (e.g., eclipse, DDOS). For example, not every node
is expected to receive every block validation or impeachment
vote that is produced within α time, resulting in some nodes
acquiring a different set of votes after the voting process is
complete, but they expect to receive the vast majority of the
votes.

A large scale healthcare blockchain would be required to
handle an extremely large amount of data. Some estimates
are as high as 30 million transactions per day [11]. We

assume that the peer-to-peer network is capable of handling
this volume of information as well as the block transmission.
If the network is not capable of transmitting this data as
fast as it comes in, it will not be able to keep up with
all of the data on to the system. We attempt to limit the
amount of communication by avoiding the transmission of
repeat information. Block transmission, for example, do not
have to contain all the transaction information. Instead, it can
contain only the transaction headers and structural information,
resulting in a block transmission size of approximately 10 MB
on average for 30 million transactions. Transaction data would
only be sent if the receiving node does not possess a given
transaction. Node signatures are also combined using additive
signatures, discussed in Section IV-H.

D. Quorum

In a single leader consensus protocol, a leader presents a
block to the network. This can cause issues, as either the
leader has free rein to alter the block or must validate the
block with an expensive set of communications. Additionally,
if our protocol is to avoid costly leader elections, the mali-
cious leader may have influence over the selection of future
leaders through alterations to their block, allowing a malicious
subgroup to potentially take control of the mining process.

To mitigate this, ACCORD distributes the role of leader
to a group of nodes called a quorum. Rather than having
one leader determine which outstanding transactions should be
included or excluded, each of the quorum members provides
a set of transactions they wish to be added to the new block.
The quorum members then perform a union operation on
these sets of transactions to determine the content of a master
block, MB, which is to be the next block. A block is valid
if more than a threshold δ of quorum members validate the
block by signing it. The members of this quorum should only
sign if all the transactions they expect are in the block. This
reduces the ability of any individual node to omit transactions
or manipulate the block. Algorithm 2 describes our quorum-
based block creation protocol.

Definition IV.1. Quorum. A quorum is a group of q nodes
that is allowed to build a block on behalf of the network.

The members of a quorum are selected using the quorum
selection protocol, described in section IV-E. Our protocol
does not require a specific quorum size q or threshold δ.
In our analysis, we found the following q and δ values
to be functional given a network size of 10000: q = 16,
as this allows the quorum size to scale while keeping the
quorum size manageable, and δ = 13. These values were
determined through experimentation and statistical analysis to
produce decent results, as they allow the consensus protocol
to reach a balance between robustness against node failure and
robustness against malicious quorum members.

If a quorum Q fails to produce a block within a specified
time or performs a detectable malicious action, the other
nodes will impeach them, voting them out and allowing a new
quorum to take over. This process is automatic and discussed

further in the Voting Rules section (section V). If multiple
quorums fail to mine the next block and get impeached,
the threshold δ can be reduced to make the block building
process easier. We decrease the threshold by two every second
impeachment, with a minimum threshold of ⌈q/2⌉ + 1. This
allows us to achieve reasonable block times during major
network outages, as seen in Section VI-B. We reset δ after
a block is successfully created.

E. Quorum selection protocol

In ACCORD, quorum members are selected by Algorithm 1.
The purpose of this algorithm is to ensure that honest quorums
are regularly selected in the presence of large malicious
coalitions within the mining pool without the need for a
network-wide synchronization while also preventing too much
foreknowledge or determinism8 of the quorum roster.

Our algorithm takes the list of all eligible miners and the
headers of the βth and (β−1)th previous blocks to determine
the next quorum9. The eligibility of miners is described in
Section IV-F. We define β as the number of blocks in a cycle
of miner selection. A larger β allows miners provides greater
robustness against large-scale malicious action. The downside
is that a larger β requires nodes to keep more blocks in active
memory and reduces the responsiveness of alterations to the
mining pool (adding new nodes or removing malicious ones,
as discussed in Section IV-B), while unfortunately allowing
malicious parties more time to corrupt quorum members. We
recommend β = 7, as this reduces the effect of certain
malicious actions while still limiting the time to coerce ma-
licious action to 70 minutes (assuming a block time α = 10
minutes). Algorithm 1 will be used to deterministically select
the quorum. Figure 2 illustrates the quorum selection process.

To begin the algorithm, we first set aside the nodes with
priority. Any node that has been eligible to mine (e.g., not
greylisted) for γ blocks. This priority list, defined by γ blocks
since last in greylist, prevents starvation, where a node is not
selected to mine for an extended period of time. We define γ
as a · (nq). We use a = 1.5. The purpose of this priority list
is to ensure that all nodes are given the chance to mine. It
ensures that the repeated creation malicious quorums cannot
consistently select sufficient nodes to create a block.

After these high-priority nodes are extracted, the remaining
nodes for the quorum are selected. The header of the βth
previous block is hashed with the list of eligible miners to
create seed s1. s2 is similarly derived using the header of
the (β − 1)th previous block. s1 is then used to randomly
choose half of the remaining miners needed for the quorum

8e.g. Algorand [32] would be purely deterministic if the weights or keys
never changed

9We use exactly two blocks in the miner selection algorithm due to our
security assumption that the last quorum with influence over an aspect of the
quorum selection process controls the results of that aspect of miner selection
algorithm. If the selection process only had one block, that block would fully
control the selection of the future quorums, which would allow malicious
quorum to select future malicious quorums. More than two blocks would
result in greater control by the later blocks rather than a desired equal control
across all blocks, as the valid miner pool effects the selection process, which
is only an issue with more than two blocks as seeds.

random
Select

List of

eligible minersFN2

FN1

FN5

FN6

...

...

...

FN98

FN100

...

H() H()

select
Priority

s1 s2

FN77

FN11

random
Select

FN70

FN13

FN32

FN6

FN2

FN12

FN31

FN77

FN11

FN13

FN70

FN32

FN12

FN2

FN6

FN31

n−1n−2n−(β−2)n−(β−1)n−β

Quorum

n−(β+1)

...

Remaining

Miners

Remaining

Miners

Figure 2: Selection process of quorum members (Algorithm 1).

and adds them to Q. Then, s2 selects nodes from the mining
pool and adds them to Q until Q is full. This process ensures
that the choices made by the earlier block are not affected by
the choices of the later block.

The network will be aware of the complete roster of Q
when they become aware of the (β − 1)th previous block.
This process allows each node to determine the quorum roster
independently, as there is no requirement to communicate
with the network beyond propagation of the blocks. If Q is
impeached, the quorum selection process is repeated using the
two blocks previous to the seeds that chose Q, the (β + 2)th
and (β+1)th previous blocks, moving back two blocks every
time there is an impeachment10. This new quorum will include
the impeachment as justification as part of their block.

When it comes to fair and efficient leader selection systems,
round robin is quite common [33][34]. Every node gets a
chance to mine once per cycle. However, a simple round
robin opens the system up to several attacks [32]. First of
all, a defined order in which the nodes mine can result in the
corruption of nodes based on their position in the round robin.
Since the order of the nodes is known an indefinite amount
of time in advance, adversaries have an indefinite amount of
time to mount an attack on nodes to attempt to disrupt the
network. A plan could involve engaging in sequential DDOS
attacks to target each node as it becomes their turn to mine.
The scale and sophistication of attacks can increase given an
unlimited amount of foreknowledge. By having future miners
mining order be determined randomly, we reduce the ability
of adversaries outside the network from harming the integrity
of the network.

F. Greylisting

Greylisting is a mechanism to prevent miners from being
assigned to mine multiple times in quick succession. When
a miner mines a block as a member of a Q, they will be
added to the greylist and will not be eligible for selection
by the Algorithm 1 until they are removed. In the event of

10If this happens early in the history of the blockchain, the seeds can be
cycled if headers before the genesis block are called for.

Algorithm 1 Quorum members selection
To create a quorum to mine block n:
Input: list of x eligible miners FNu = [N1, N2, ..., Nk], quorum size q,
priority threshold γ, and block headers Hn−β , Hn−(β−1) and the number
of impeachments making Hn−1

1: s1 ← h(Hn−β |FNu|J)
2: s2 ← h(Hn−(β−1)|FNu)
3: remove any impeached miners from FNu

• If |FNu| < q, reset FNu to its original state and reset the list of
impeached miners.

4: Q ← {}
5: Select priority nodes: Select all nodes FN i from FNu where the last

instance of FN i being removed from the greylist was before block n−γ.
Add at most q of these nodes to quorum Q.

6: s1 selects quorum members:
Q ← Q∪ randomSelect(FNu,

⌈
q−|Q|

2

⌉
, s1)

7: s2 selects quorum members:
Q ← Q∪ randomSelect(FNu, q − |Q|, s2)

8: return Q

impeachment, Q failed to mine a block and an alternate Q′

succeeded. To prevent manipulation of the quorum selection
process, Q′ will be added to the greylist after β blocks and are
eligible to mine until that time. Q will be ineligible to mine
for β blocks, but will not be treated as having entered the
greylist for the purposes of Algorithm 1. In our analysis, we
found that the greylist should consist of approximately 33% of
the mining pool at any given time. Any excess nodes should
be removed if the list exceeds 33% of the nodes, following
a FIFO structure. Greylisted nodes should still sign to accept
blocks, propagate blocks, and sign impeachment if warranted.

The main purpose of greylisting is to prevent a small
malicious subset of the mining pool from being capable of
taking control of the mining process. Since future quorums
are selected by two blocks created by previous quorums, these
two previous quorums theoretically have the ability to select
the future quorum. If the malicious party gets lucky enough
to randomly gain control of β consecutive blocks, this could
lead continually selecting their own members for mining duty.
The greylist helps prevent this by reducing the number of
available cooperating malicious nodes. These nodes would
need to be able to saturate the greylist to maintain control.
Another advantage of greylisting is to allow nodes to have
a period of time where they do not need to be active. For
example, after a quorum member mines and is greylisted, they
can perform maintenance on their system, knowing they will
not be selected to a quorum in the near future.

G. Block structure

In our protocol, the block structure consists of a block
header H, metadata, transaction section, signature section, and
the signatures from the quorum members σQ. All included
transactions will have their content and signatures separated.
The block header H is the SHA-256 hash of the metadata and
transaction sections. The quorum members sign the hash of H
concatenated with the hash of the signature section. Figure 3
illustrates the structure of a block.

Block Header (Hash)

Metadata

Transaction Section
Bookkeeping

Tx1, Tx2, … Txk
Content

Txk+1, Txk+2, … Txn

Signature Section

σ(Tx1), σ(Tx2), …σ(Txn)

 Quorum signatures

Size of sections

Prev Hash

Quorum IDs

Justification (J)

Figure 3: Block structure. The grey portions will be used in
the Quorum Selection Protocol (Algorithm 1).

The transaction section includes two types of transactions:
the MSA bookkeeping transactions and content transactions.
Included among the bookkeeping transactions are the quorum
members’ null transactions, discussed in Section IV-I. The
bookkeeping is expected to be small, possibly only consisting
of the null transactions. The content transactions will generally
be the largest section, potentially containing thousands of
transactions per block. All transactions are sorted by trans-
action header within their sections. The signature section will
include the signatures of the transactions in the same order
or structure that they appear in the transaction section. These
transactions are also in a Merkle Tree [35], allowing for faster
verification of a transaction’s existence in a block.

In this blockchain, there is no defined size limit imposed
on the blocks, as every transaction must be added to the
blockchain eventually. Quorum members attempt to add every
valid transaction from their mempool to the block. We assume
that the peer-to-peer network can handle the throughput of
raw transactions, so the transmission size of the block must
be of reasonable size. Assuming 30 million transactions in a
day, if only block skeletons are transmitted, then the block
transmission will usually be less than 10 MB. Extended block
creation times due to impeachment can result in larger blocks.
These should never exceed 200 MB given the protections
against node fault tolerance (see Sections VI-B and VII-D
for statistics on impeachment). Given Bitcoin has a median
propagation of 12.6 seconds to propagate 1 MB blocks [36],
a 10 minute propagation time should be more than adequate.

The genesis blocks are the first β blocks. These blocks can
be created by the MSA. The first genesis block has no previous
block header and contains the bookkeeping transactions to add
the initial miners. The next β − 1 blocks are empty blocks
except that they are created by the MSA.

A block is valid if (1) all contained transactions are valid,
(2) the block structure is correct, (3) the metadata is accurate,
and (4) the block is signed by a valid quorum.

H. Additive Signature

Due to the number of signatures that need to be col-
lected and maintained, it is important that these signatures
be condensed. To this purpose, the voting signatures will be
aggregatable signatures to allow compression of the votes
into one signature. Any arbitrary non-cooperative aggregate
signature scheme will work, so we will employ the signature

scheme created by Boneh et.al. [37]. To use this scheme (or
similar schemes), each signed message should be unique, so
the messages can be appended with Ki, their standard public
key. Node Ni will sign these messages using Ai.

I. Null Transaction

In ACCORD, quorum members are selected using block
headers from earlier in the blockchain. To ensure that each par-
ticipating quorum member has an impact on the block header,
they will be required to produce an empty null transaction
for their block. Given a previous block header Hn−1, there
must be only one possible valid null transaction per node to
prevent free manipulation of the block header. Null transaction
must be infeasible to forge without the node’s private key. This
is accomplished using a key image technique [38][39]. In this
approach, we add an aspect of the previous block to the public
portion of the generator creation hash to ensure a unique key
image for each node on each block. Let Ki be quorum member
i’s standard public key, si be their private key, and HG be a
hash-to-group function. Then, quorum member i’s key image
Ii is defined as follows:

Ii = si ·HG(Ki|Hn−1) (1)

Each party’s null transaction will only contain Ii and proof
that Ii is well-formed given the party’s credentials. To prove
this is well-formed, we will use a Zero-Knowledge Proof
to prove that ((G, G,Hp(Ki|Hn−1),Ki, Ii), si) is a Diffie-
Hellman tuple11 [40]. This proof is made non-interactive using
the Fiat-Shamir heuristic [41]. The proof will act as the
signature for this transaction and will have no impact on the
block header Hn, as it will be in the signature section of the
block. A quorum member must provide a null transaction to
sign the block.

J. Mempool

A node’s mempool is where a node stores all valid un-
confirmed transactions they have received. Upon receiving a
transaction, the node verifies the transaction and adds it to
the mempool. When a new valid block B is received by a
node, all of the transactions in B are removed from that node’s
mempool. Each node maintains its own mempool. While a
node is a member of a quorum, they continue to receive
transactions, but these transactions are not added to the block
B, as discussed in the Section IV-K.

K. Block Skeleton

A block skeleton is a list of transaction headers that a
quorum has in their mempool and wishes to add to the block.
A node’s block skeletons act as a commitment to the list
of transactions the node possesses. Upon receiving a block
skeleton, fellow quorum members can use it to determine
which transactions they need to request to build the completed
block. The purpose of the block skeleton is to ensure that no

11e.g, in the Diffie-Hellman key exchange, ((G,A,B,K), b), where a ·
G = A, b ·G = B, and a · b ·G = K, would be a Diffie-Hellman tuple, as
the relations b ·G = B and b ·A = K share the same key b.

malicious member of the quorum can create a transaction to
modify the block header in a predictable way, which prevents
the malicious node from influencing quorum selection.

L. Communication in Block Creation

In our block creation protocol, each party attempts to create
a direct secure line of communication between themselves and
the other quorum members. Every party has a public key on
the blockchain, so the execution of the Diffie-Hellman protocol
is trivial and requires no communication between the nodes to
create a shared key. If a node cannot, for any reason, create a
secure line of communication between themselves and another
node, they can arrange for their messages to be forwarded
by other quorum members or another node in the network.
All messages from one quorum member to another should be
signed by the sender, and the receiver should be responded to
each message with a signed receipt.

If a quorum member Pi is waiting for a specific message,
they will send requests for the missing message to be for-
warded to them to the other quorum members. After enough
time has passed (e.g. α

5), Pi will treat the respective parties Pj

as absent or offline and attempt to continue with the protocol.
While Pi is waiting, they will still respond to messages sent
from other quorums. This is also called requesting.

M. Block Creation Protocol

Before we begin the block creation protocol, Algorithm 1
is used to choose a quorum Q = {P1, P2, ..., Pi, ..., Pq}. The
results of Algorithm 1 can be verified by any node wishing
to verify that this set of nodes may create the block. Qn is
expected to create a valid block within α time of receiving
the previous block. The protocol starts with each Pi creating
a block skeleton SBi as a manifest of the transactions in their
mempool. Pi creates a commitment JSBiK and sends JSBiK
to the other nodes Pj in Q. Pi now waits to receive JSBjK
from all Pj . Note that if any Pj fails to respond through any
accepted channel within a prescribed time, they will be treated
as absent and omitted from the protocol. After this, Pi opens
their commitment to each Pj , sending them SBi and waiting
for the prescribed to receive all SBj . Once Pi has the skeleton
blocks SBj from all Pj , Pi will create a null transaction
(defined in Section IV-I) for this block and broadcast it to
Q. Pi then identifies the transactions from the SBj that Pi

does not possess. They then send a message requesting these
transactions from each Pj . If a requested transaction appears
in multiple SBj’s, Pi will first request the transaction from
the first node to their right in the quorum list12, treating the
quorum list as cyclical13. Pi now waits to receive all Pj’s null
transactions and all requested transactions.

Upon receiving all expected transactions, they are ready to
construct the master block MB. Each party should have the
ability to constructMBi locally following the block structure
rules discussed in Section IV-G. When Pi locally creates a
MBi, they need to ensure that all Pj generated identical

12(e.g. if Pi+1 and Pi+2 both have the transaction, Pi will first ask Pi+1)
13Pq+j is the same as Pj

MBj’s. This can be ensured by exchanging the block header
MHi with all other Pj . If there exist multiple distinctMHj ,
then the members of Q will exchange their blocks to find
any discrepancies. If these discrepancies can be solved with
forwarded messages, then the deviating Pj’s can correct their
blocks and produce an agreed-upon block header Hn. If, after
this, at least δ members of Q agree on a block, they will
continue without the dissenting quorum members. If Pi agrees
with Hn, Pi will validate the block by signing the block
as stated in Section IV-G. Pi should only sign at most one
block to succeed Bn−1 and refuse to sign any alternates that
appear in the future. When the block header has more than
δ signatures, Pi will add the quorum signatures σQ to the
block Bn and broadcast Bn to the P2P network. Bn is first
transmitted as a block skeleton with metadata. If the receiving
node does not possess a transaction in Bn, they will request it
from the sending node. Bn will be validated by the network
while the next quorum works to produce Bn+1. Qn sends Bn
directly to Qn+1, Q′

n+1, and Q′
n, where Q′

n+1 is the quorum
responsible to mine if Qn+1 is impeached, so that they can
start working as soon as possible. If Qn+1 or Q′

n+1 has not
received Bn within an expected time period, they will send a
request to the peer-to-peer network asking for the block. Qn

should endeavour to release Bn approximately α time after
receiving Bn−1.

N. Synchronicity Model

While we aim to produce an asynchronous block creation
process, ACCORD as a whole is partially synchronous, in that
we assume that the majority of messages arrive at their destina-
tion within a time, but some some messages may be blocked by
an adversary. We aim to avoid any synchronizations between
the creation of two blocks, but the network-wide validation of
the block requires a vote, which is a partial synchronization.

The process of selecting a quorum Qn, creating a block
Bn, publishing it, selecting a new quorum Qn+1, and creating
the block Bn+1 requires no network-wide synchronization.
However, it does require the quorums involved to be fully
synchronous. For impeachment and block validation, the vot-
ing process is partially synchronous, as the votes collected
by individual nodes do not have to be consistent for an
impeachment to be successful.

V. MINING RULES

A. Block status definitions

A block B created by a quorum Q can exist in several
different states in the view of an honest node.

Definition V.1. Pending: B is pending if it has neither been
accepted nor abandoned.

Definition V.2. Accepted: B is accepted if at least
⌊
|N |
2

⌋
+1

of N have signed to accept B and all blocks previous to B.

Definition V.3. Abandoned: B from Q is abandoned if:

1) a competing block B′ has become well-established or

Algorithm 2 Building a Block Bn
Input: A set of unconfirmed valid transactions (mempool) and a quorum Q
of q nodes, {P1, P2, ...Pi, ...Pq}, with a required signing threshold of δ,
and a time limit tlimit.
Output: A valid block or null if fails. If Q is impeached, abort the protocol

Overview: Pi is a member of Q. This protocol takes the mempools of the
nodes in Q and combines them to form a block.
1: Initialization. Pi creates a skeleton block SBi with all available trans-

action headers from their mempool.
2: broadcast(Pi,Q,SBi) // Pi exchanges SBi with all Pj

3: request(Pi,Q,SBj)
4: Pi creates their null transaction Ii.
5: broadcast(Pi,Q, Ii)
6: request(Pi,Q, Ij)
7: Pi verifies the validity of all Ij . If Ij is invalid, Pj are omitted from the

mining process.
8: Pi creates the skeleton master block SMB ←

⋃q
l←1 SBl

9: for all transactions Tx ∈ SMB − SBi do // Get unknown Txs
10: request(Pi,Q, Tx)
11: Pi creates the master block MB
12: H′n ← block_hash(MBi) // Pi creates block header
13: MHi ← full_block_hash(MBi) // Pi creates hash to sign
14: broadcast(Pi,Q,MHi)
15: request(Pi,Q,MHj)
16: let z ← the size of the largest group in Q broadcasting the same MH
17: if z = q then // All Pj created the same MHj

18: Bn ←MBi
19: Hn ←H′n
20: else if z < q then
21: broadcast(Pi,Q,MBi)
22: request(Pi,Q,MBj)
23: while telapsed < tlimit or z < δ do
24: Attempt to reconcile differences using message log to create Bn.
25: if (MBi = Bn) // If Pi agrees with Bn, Pi signs the block.
26: σi = block_signPi

(MBi)
27: broadcast(Pi,Q, σi)
28: request(Pi,Q, σj)
29: let z′ ← the number of valid signatures of MH
30: if (z′ ≥ δ)
31: Add all σj to Bn
32: return Bn
33: else goto step 28.

2) Q has been impeached and B has not been well-
established.

Definition V.4. Well-established: Bn is well-established if a
chain of at least β′ consecutive accepted blocks (Bn+1, Bn+2,
... Bn+β′) are appended to it.14

When Bn is released by Qn, it is pending to all nodes that
receive it. The quorum Qn+1 will operate assuming Bn will
not be abandoned.

B. Voting Rules

In our system, there are multiple situations where a node Ni

inN will be expected to vote. When Ni votes, they will release
a unique standardized message and sign it using their additive
signature key Ai. This message is dependent on what they are
voting on. The two major causes of voting in our protocol are
block accepting and impeachment. A similar approach can be
used if N is the MSA to create MSA transactions.

14The number of blocks can be equivalent to the quorum selection block
cycle β, meaning β′ = β, but this is not a requirement.

1) Block acceptance procedure: When Ni receives a valid
block Bn, they wait for time α to ensure Bn propagates
and there is no competing B′n, from the same quorum. If,
after waiting α time, Ni has receives no conflicting blocks
created by Qn and Qn has not been impeached, Ni will
vote to accept Bn. Ni votes by creating a message MA ←
(accept_flag|MHn|Ki), where accept_flag is a con-
stant flag to identify block acceptance,MHn is the full block
header of Bn, and Ki is Ni’s standard key. MA is then signed
and broadcasted to the network.

Ni may sign a block Bn where previous blocks have
not been accepted yet. However, Ni should not sign Bn
if Bn−⌊0.5·β′⌋ has not been accepted, Ni should wait un-
til Bn−⌊0.5·β′⌋ is accepted. This prevents a buildup of un-
confirmed blocks while preventing the potential of a well-
established fork. Node Ni should not vote to accept multiple
blocks from the same quorum. Any node Nj that votes for
multiple blocks from the same quorum has committed a
detectable malicious action and will be punished. However,
Ni voting for acceptance of a block from Qn does not prevent
Ni voting for the impeachment of Qn.

If Qn has been impeached, Ni should not sign any blocks
appended to Qn’s block Bn unless Bn is well-established.

The purpose of waiting for time α (i.e., propagation) before
voting is to make it improbable that an honest node Ni voted
for Bn and another honest node Nj voted for a competing
block B′n from the same quorum.

2) Impeachment: Impeachment is the process by which N
can remove malicious or defective quorums. There are three
cases when Ni votes to impeach Qn.

The first case is if a node Ni has not received a valid
block from quorum Qn within 2 · α time of receiving Bn−1.
If Qn was selected due to impeachment, Ni waits for 3 · α
time after they signed the previous impeachment, assuming
the previous impeachment was successful, before signing the
next impeachment.

The second case is if Ni has received multiple valid blocks
(B1n, B2n...) from Qn with none of them being accepted within
time 3·α, Ni will vote to impeachQn. The quorum’s malicious
actions are clear to the network and would likely result in some
form of punishment (e.g., expulsion from the network), even
if they are not impeached.

The third case is if Ni has signed the block Bn, but Bn has
not been accepted for a period of 2 · α. This could occur if
there is a required MSA transaction with a block deadline of
n that Ni is not aware, and this transaction is not present in
the Bn.

In the event of impeachment, Ni will create a mes-
sage MI = (impeachment_flag|MHn−1|c|Ki), where
impeachment_flag is a constant flag to identify impeach-
ment, MHn−1 is the full header of the previous block, c is
the number of previous impeachments on quorums creating
a block on MHn−1, and Ai is Ni’s additive public key.
MI is then signed and broadcasted to the network. Quorum
members can vote for their own impeachment. Impeachment

votes should be accompanied by the motivation to impeach
(e.g. block not created, multiple blocks, invalid block, etc).

If Bn gets accepted and the impeachment on Qn does not
reach a majority, then node Ni should accept Bn. If Bn gets
accepted and the impeachment on Q succeeds, then node Ni

should reject Bn unless Bn is well-established.
If Ni is part of Q′

n, the quorum selected in the event of
Qn’s impeachment, Ni can start to work with other members
of Q′

n before Qn’s impeachment to decrease their response
time in the event of impeachment.

It is important to note that impeachment is not necessarily
the result of malicious action by Qn. For example, Qn may
fail if fewer than δ of them are online due to a network or
power outage. Any impeachment, however, should result in an
investigation outside the blockchain to determine whether any
malicious action took place. Such an investigation can consult
the message transcripts from our protocol.

C. Multiple Accepted Blocks

Due to the delay of α time before voting, it is highly un-
likely that two honest nodes will sign to accept two competing
blocks Bn and B′n from theQn. If a quorum were to release Bn
and B′n some time later, then the vast majority of honest nodes
will detect Bn first. It is possible that some honest nodes will
also sign Bn. However, it is highly unlikely that any honest
node would sign B′n, as if they receive B′n first, it is highly
unlikely for them to not see Bn or evidence of Bn’s existence
(e.g. impeachment votes) before α time has passed.

However, it is theoretically possible that multiple blocks
could both achieve a majority. If honest nodes’ votes are
divided on a large scale, it is possible that both blocks
may get a majority of the votes due to malicious double
voting (i.e., a node voting for multiple blocks). If Ni views
multiple competing blocks as accepted, it will vote to impeach
Qn, rejecting all Qn’s blocks unless one of them is well-
established. Such an attack is unlikely, as it would require
a segregation of the P2P network.

VI. EXPERIMENTAL EVALUATION

In this section, we evaluate the performance of our protocol
in different simulation scenarios. These include analyzing
communication benchmarks within the quorum, robustness
against non-responsive miners, an analysis of to control the
mining process, and miner selection distribution. These exper-
iments are purely statistical and are hardware agnostic.

A. Communication costs

To determine the communication overhead of our mining
process, we measured the communication costs within the
quorum. We conducted multiple groups of experiments with
varying network sizes and the number of transactions. We
measured the number of messages required for a quorum to
create a block and used this to calculate the total size of
all the messages. We ran multiple experiments with different
parameters. We measure the average size of the different types
of messages sent with respect to transactions and network

size. We assumed that a list of transactions exists in the
network, and the probability that a given node has any given
transaction is 80%, as not all transactions will have propagated
to every node in the quorum or the network. We ran these
experiments with three methods of handling the variables.
First, we changed the number of transactions while keeping the
network constant at 5000 nodes. Second, we increased the size
of the network while keeping the transactions constant at 8000.
Finally, we had a more realistic scenario where the network
size and number of transactions scale together such that the
number of transactions is 1.5 times the size of the network. We
assume in this context that the nodes are behaving honestly
and there are no network errors. The values are measured as
the total communication of one node in the quorum.

Figures 4[a-c] shows the communication overhead of the
exchange of skeleton blocks in MB. Figure 4(a) shows that as
the number of transactions increases, the size of the communi-
cations associated with the exchange of skeleton blocks scales
linearly. In Figure 4(b) we hold the number of transactions
constant. By observing the graph, we can conclude that the
average bandwidth used to exchange skeleton blocks appears
to only increase when the size of the quorum is increased.
In Figure 4(c), the trends seen in Figure 4(a) and Figure 4(b)
are apparent and there does not appear to be any emergent
complexity. Figures 5[a-c] show similar trends, but the scaling
of these graphs shows these communications are negligible
compared to the skeleton blocks.

B. Fault Tolerance

These fault tolerance experiments show the robustness of
our consensus protocol against different percentages of in-
active nodes. We measure robustness by measuring average
number of impeachments with different signing thresholds,
assuming a maximum propagation time α = 10 minutes.
We assume that the nodes that are active in the network are
behaving honestly in this context. Here we consider 15 nodes
in the quorum and 10000 mining nodes in the network.

Figure 6 with a varying number of nodes initially required
to sign a block. In this setup, if the next block has three
consecutive impeachments, then the number of quorum sig-
natures required to mine this block is reduced by two without
reducing the number of required signatures to below a simple
majority. The x-axis indicates the total percentage of nodes
in the network that are temporally unavailable (e.g., power
outage, malicious behavior), and y-axis shows the average
time in minutes required to form a functioning quorum.
We ran our experiment with 10,000 iterations examining the
creation of 10 consecutive block, as most outages are resolved
fairly promptly. If there is an extended outage, the MSA can
temporarily suspend the effected nodes withing 10 blocks.

Figure 6(a) shows how the network responds to small
outages of less than 10%. If we required all 15 quorum to sign
a block, the average block time increases to untenable levels
very quickly, taking over an hour with a 10% network outage.
The average time is significantly improved by requiring only
14 or 13 quorum signatures, reducing the average block

0

1

2

3

4

5

1.5 3 4.5 6 7.5 9 10.5 12 13.5 15

A
v

g

M

B
/n

o
d

e

Number of Tx (×1000)

Newtork size = 5000

Pr[node has Tx] = 0.8

(a) Scaling Tx

0

1

2

3

4

5

1 2 3 4 5 6 7 8 9 10

A
v

g
 M

B
/n

o
d

e

Network Size (×1000 nodes)

#Tx's = 8000

Pr[node has Tx] = 0.8

(b) Scaling network size

0

1

2

3

4

5

1 2 3 4 5 6 7 8 9 10

A
v

g
 M

B
/n

o
d

e

Network Size (×1000 nodes)

#Tx's = 𝒩 ⋅ 𝟏. 𝟓
Pr[node has Tx] = 0.8

(c) Scaling network size and Tx

Figure 4: Average communication overhead per node from skeleton blocks with different number of transactions and nodes.

0

2

4

6

8

10

12

0 1.5 3 4.5 6 7.5 9 10.5 12 13.5 15

A
v

g
 K

B
/n

o
d

e

Number of Tx (×1000)

Requests Receipts Signatures

Newtork size = 5000

Pr[node has Tx] = 0.8

(a) Scaling Tx

0

2

4

6

8

10

12

0 1 2 3 4 5 6 7 8 9 10

A
v

g
 K

B
/n

o
d

e

Network Size (×1000 nodes)

Requests Receipts Signatures

#Tx's = 8000

Pr[node has Tx] = 0.8

(b) Scaling network size

0

2

4

6

8

10

12

0 1 2 3 4 5 6 7 8 9 10

A
v

g
 K

B
/n

o
d

e

Network Size (×1000 nodes)

Requests Receipts Signatures

#Tx's = 𝒩 ⋅ 𝟏. 𝟓
Pr[node has Tx] = 0.8

(c) Scaling network size and Tx

Figure 5: Average communication overhead per node of smaller messages within quorum to build a Master block.

time to less than 15 minutes to create a block with a 10%
outage. While the block time is improved by reducing the
signing threshold further, the effect has apparent diminishing
returns and cause security concerns, discussed in Section VI-C.
Figure 6(b) shows the recoverability of the system given larger
outages of up to 50% − 1 of the network. With any of the
initial required signature settings, the block creation becomes
intolerably slow for long-term use, but the system remains
recoverable, with the 10 block run lasting no longer than 40
hours, at which point it can return to normal operation.

C. Manipulation in selection

A common concern with miner selection schemes use
previous blocks to select future miners is the potential that
a malicious block can select malicious miners, which could
allow these malicious miners to take control of the system
by repeatedly selecting other malicious miners. With this
experiment, we intend to show that our protocol is resistant
to such an attack. This attack is discussed in more detail in
Section VII-C.

We conducted this experiment assuming a network size of
10,000 mining nodes and a quorum size of 15, and we chose
β = 7. We assume that if a quorum is malicious, they can
create a block that will produce a selection of nodes of their
choosing. In this experiment, we assume that the malicious
nodes will not use impeachment to maintain control, as this is
a detectable behavior. We also assume that, at the beginning of
the experiment, the malicious group spontaneously gained con-
trol of β consecutive blocks, enough to cycle their control of
the system. We ran this experiment with all the valid threshold

0

10

20

30

40

50

60

70

80

0% 1% 2% 3% 4% 5% 6% 7% 8% 9% 10%

A
v

g
 b

lo
c
k

 t
im

e
(m

in
)

% of nodes down in the network

15 14 13 12 11 10

Network size: 10000

Quroum size: 15

Blocks: 10

Trials: 10,000

(a) Blocktime up to 10% nodes unavailable

0

50

100

150

200

250

300

350

0% 10% 20% 30% 40% 50%

A
v

g
 b

lo
c
k

 t
im

e
 (

m
in

)

% of nodes down in the network

15 14 13 12 11 10

Network size: 10000

Quroum size: 15

Blocks: 10

Trials: 10.000

(b) Blocktime up to (50%− 1) nodes unavailable

Figure 6: Average block time given increasing network out-
ages. α = 10 minutes.

settings, similar to the experiment in subsection VI-B. Finally,
we compared our two seed model with an equivalent single

seed model. Our test involved selecting 100,000 quorums, and
we ran this test 5 times and averaged the results.

The strategy employed by the different versions of this
protocol are as follows: On the single seed version, if the
(n − β)th quorum is malicious, they will attempt to make
the nth quorum malicious with the minimum possible number
of malicious nodes. They will prioritize malicious nodes that
have most recently left the greylist (low priority nodes). They
will then fill the rest of the quorum with honest nodes that
have least recently been on the greylist. If there are too many
high prioirty honest nodes or too few malicious nodes are
available, they will be unable to take control of quorum n and
will instead fill the quorum with only higher priority honest
node to improve the probability that their malicious group will
regain control in the future.

On the two seed version, a single quorum has less control,
needing control of the n − β and n − (β − 1) quorums to
control quorum n. In all cases, if there are too many high
priority honest nodes or not enough eligible malicious nodes
to take control, they will fill all slots with higher priority honest
nodes. If they have control of both quorums, they will follow
the single seeded approach. If they control the (n−β) quorum
but not the n − (β − 1) quorum, they will fill their half of
the selection with lower priority malicious nodes to increase
the probability that block n will be malicious. If they control
quorum n− (β − 1) and not n− β, they will take control of
quorum n if they are able. Their ability depends on whether
the priority miners and the miners selected by quorum n− β
include fewer than q − δ honest nodes and

Figure 7(a) shows that requiring too low of a threshold
makes the protocol too vulnerable to this attack, with the
worst case of a threshold of 9 in the quorum causing the
honest nodes to lose control at 15% malicious nodes. The
results improve as the threshold increases, requiring that the
malicious group use more of their membership per block and
reducing their ability to prevent honest nodes from attaining
priority. Figure 7(a) demonstrates that the two seed version
generally reduces malicious control of the network up to a
breaking point, where both versions reach 100% control at
the same level of corruption.

On Figure 7(b), we narrow the y-axis to a maximum of 5%,
removing the lines that exceed that value to get a better look
at our recommended threshold settings as network corruption
approaches 50%. This shows that the two seed versions of
our recommended δ = ⌊0.9 ∗ q⌋ = 13 threshold produces
results roughly equivalent to the lower thresholds, whereas its
single seed counterparts have approximately 4% of the blocks
created being created by the malicious group. This, combined
with our robustness experiments in Subsection VI-B, leads us
to recommend this threshold.

We should note that when the malicious nodes were given
control, they managed to keep control on our recommended
settings for approximately 680 consecutive blocks at 50% −
1, or 4.7 days with a 10 minute block time. However, it is
important to note that on none of the trials of the two-seeded
version did the adversary manage to take control of the mining

process on its own, even at 50% − 1. This is due to the fact
that the single seeded version allows for the malicious group
to gain control of sections, whereas the two seeded version
requires the malicious group to randomly gain control of β
quorums in a row.

0%

20%

40%

60%

80%

100%

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49

%
 b

lo
ck

s
co

n
tr

o
ll

ed

% malicious nodes

1 seed

2 seed

Seeds Threshold
8
9
10
11

12
13
14
15

(a) All thresholds

0%

1%

2%

3%

4%

5%

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49

%
 b

lo
c
k

s
co

n
tr

o
ll

ed

% malicious nodes

1 seed

2 seed

Seeds Threshold
13
14

15

(b) Trimmed thresholds

Figure 7: Percentage block corruption vs malicious control of
mining pool. The solid line is our protocol, whereas the dotted
line is an equivalent single seeded version.

D. Miner Selection Distribution

To quantitatively analyze the models in terms of fairness, we
conducted several simulation experiments to observe the miner
selection distribution. We endeavored to create a quorum se-
lection protocol that, under honest conditions, will select every
node to a quorum with approximately the same frequency.

Figure 8(a) reported below is showing that the distribution
of our protocol and a random selection. The x-axis represents
the nodes based on their rank, meaning they are sorted by the
number of times they mined. The y-axis indicates the number
of times these nodes mined. We ran this experiment 1000
times, where each run simulated 1000 quorum selections. On
each run, the nodes are ranked by the number of times they
were selected to a quorum. The trials were averaged by rank
to produce the graph.

Figure 8(b) is a larger scale simulation of the quorum
selection protocol. We simulated the protocol with several
variations up to the point where the average number of times
a node was selected was 200. We then ran this simulation
100 times and averaged the results by rank. We repeated this
with larger network sizes. Figure 8(b) shows that the size

of the network does not appear to affect the fairness of the
selection process. It also shows that Algorithm 1 provides a
much more even distribution on average when compared to
random selection. Additionally, we analyzed the two major
components of Algorithm 1 that impact selection distribution:
the priority miners and the greylist. It appears that our fairness
is mostly driven by the existence of the priority miners due
to its enforcement of a pseudo-round-robin style of quorum
selection. However, the greylisting does improve fairness as
compared to random selection.

250

260

270

280

290

300

310

320

330

340

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

#
 o

f
ti

m
es

 M
in

e

Nodes (sorted by number of blocks mined)

Algorithm 1 Random Average

#Iterations: 1000

#Trials: 1000

Qurorum size: 6

(a) Frequency of quorum selection with 20 nodes.

(b) Distribution of quorum selection with increasing
network size.

Figure 8: Distribution of quorum selection

VII. THREAT-RISK ASSESSMENT MODEL

Consensus protocols have some common vulnerabilities that
need to be addressed. Below, we highlight a few of these and
our mitigation techniques against these vulnerabilities.

A. Fork Resistance

Though a perfect immunity to forks is infeasible in a
blockchain system, our protocol makes forks highly improba-
ble in an honest setting, as well as making the network able to
efficiently resolve forks in a malicious setting. We achieve this
through four major procedures in our work: Quorum selection
protocol, the block creation protocol, the block acceptance
procedure, and the impeachment procedure.

Our quorum selection protocol (Algorithm 1) only selects
one quorum to mine at any given time. This prevents multiple
different quorums from creating blocks simultaneously and
causing disagreement on the network. This protocol also helps
to prevent forks by ensuring that if quorum Qn created

multiple blocks then the next quorum Qn+1 would be re-
sponsible for appending to each of these competing blocks.
Our block creation protocol (Algorithm 2) requires δ signature
from quorum members to produce blocks. It would require
significant corruption of the quorum for them to be able to
release multiple valid blocks.

The block acceptance procedure (Section V-B1) ensures that
even if a quorum releases multiple blocks, that it is highly
improbable that different competing blocks will gain votes
from honest nodes. Impeachment (Section V-B2) ensures that
if a quorum releases multiple blocks, then network does not
need to choose between these blocks (potentially resulting in
a tie or no consensus) and can remove the malicious quorum.

B. Long-Range attack

The Long-Range attack is a common vulnerability in con-
sensus protocols aiming to be energy efficient. In the Long-
Range attack, an adversary gains control of a majority of the
mining network at a certain block in the past. This allows them
to unilaterally create a fork from that point by using the stolen
deprecated credentials to execute the consensus protocol.

Moving checkpoints is a mitigation approach utilized by
many PoS based protocols. The concept behind moving check-
points is that there is a quota on the most delinquent n number
of blocks of the chain which can be reorganized (e.g., the
quota for Peercoin [42] is restricted to one month’s worth
of blocks and for NXT it is of a few days or hours. In our
system, this attack could be executed if the adversary acquired
enough private keys from miners who were members of the
mining pool at a block in the distant. This gathering of keys
could take place over the course of years and use keys that
were depreciated in the past. If the attacker accumulates the
majority of the private keys of the network at that block, they
may rerun the consensus protocol and write a new history of
the blockchain from that point.

Our protocol is vulnerable to Long Range Attack, as there
is no concrete mechanism to prove which branch is valid to
someone validating from the genesis block. As a countermea-
sure, our protocol has the concept of well-establishment, which
is a rolling checkpoint system. From the perspective of a node
or observer who has observed the blockchain between the
block that is attacked and the time of attack, no one can reverse
the blockchain before the last checkpoint. However, such a
branch would be fairly identifiable at the point of divergence,
as there would likely be a purge or mass re-keying of mining
nodes or a significant number of impeachments on the fake
branch. Additionally, since this protocol is nominally designed
for healthcare, an observer can ask hospitals which branch is
real, which they can show by providing transactions signed by
them on the appropriate chain.

C. Future miners selection attack

D. Statistical Analysis of Impeachment and Malicious Block
Takeover

Experiment VI-C examines a strategy to maintain control of
the mining process assuming no impeachment. While repeated

0

5

10

15

20

25

30

35

40

0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

10 15 20 25 30

E
x
p

e
c
te

d
 N

u
m

b
e
r
 o

f
Im

p
e
a
c
h

P
ro

b
a
b

il
it

y
 o

f
M

a
li

ci
o
u

s
B

lo
ck

(a) δ = q, ∆δ = 1 every 3

0

5

10

15

20

25

30

35

40

0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

10 15 20 25 30

E
x
p

ec
te

d
 N

u
m

b
er

 o
f

Im
p

ea
ch

P
ro

b
a
b

il
it

y
 o

f
M

a
li

ci
o
u

s
B

lo
ck

(b) δ = q, ∆δ = 1 every 1

0

5

10

15

20

25

30

35

40

0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

10 15 20 25 30

E
x
p

ec
te

d
 N

u
m

b
er

 o
f

Im
p

ea
ch

P
ro

b
a
b

il
it

y
 o

f
M

a
li

ci
o
u

s
B

lo
ck

(c) δ = q, ∆δ = ⌊0.185q⌋ every 1

0

5

10

15

20

25

30

35

40

0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

10 15 20 25 30

E
x
p

ec
te

d
 N

u
m

b
er

 o
f

Im
p

ea
ch

P
r
o

b
a

b
il

it
y

 o
f

M
a

li
c
io

u
s

B
lo

c
k

(d) δ = ⌈0.81q⌉, ∆δ = 1 every 3

0

5

10

15

20

25

30

35

40

0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

10 15 20 25 30

E
x
p

ec
te

d
 N

u
m

b
er

 o
f

Im
p

ea
ch

P
r
o

b
a

b
il

it
y

 o
f

M
a

li
c
io

u
s

B
lo

c
k

(e) δ = ⌈0.81q⌉, ∆δ = 1 every 1

0

5

10

15

20

25

30

35

40

0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

10 15 20 25 30

E
x
p

ec
te

d
 N

u
m

b
er

 o
f

Im
p

ea
ch

P
r
o

b
a

b
il

it
y

 o
f

M
a

li
c
io

u
s

B
lo

c
k Malicious Block: 10%

Malicious Block: 30%
Malicious Block: 50%
Impeachment EV: 10%
Impeachment EV: 30%
Impeachment EV: 50%

(f) δ = ⌈0.81q⌉, ∆δ = ⌊0.185q⌋ every 1

Figure 9: Comparison of Probabilities of either malicious quorum with impeachment or perpetual impeachment at different
levels of malicious control.

impeachment may be infeasible to maintain control of the
system due to the suspicious activity required to achieve it,
it may be considered a viable strategy.

First of all, we define n as the number of available nodes,
m as the number of malicious nodes, δ to be the original
threshold, δi to be the threshold after i impeachments, ∆δ
as the number of impeachments required to decrease the
threshold and the amount the threshold is decreased. For the
sake of simplicity, we ignore the ineligibility of nodes after
impeachment, as the proportions of nodes are unlikely to
change significantly before the block is finalized. We also
assume that any node is as probable to be in the greylist as
any other node.

To analyze the probability of a malicious subgroup gaining
control of a single block, we created a probability model of our
protocol assuming random seeds. To begin, we must produce
the probability of creating a malicious block. Pr[mal by ∞] =∑∞

i=0 Pr[mal at i] · Pr[imp to i], as to achieve a malicious
block after i impeachments, the malicious group must get
to that level of impeachment and get enough of their co-
horts in the resulting quorum to achieve a malicious block.

Pr[mal at i] =
∑q

i=δi
(i
m)(

q−i
n−m)

(qn)
. The probability that a ma-

licious group is unable to take malicious able to cause an

impeachment Pr[imp of i] =
∑δi−1

i=q−δi+1 (
i
m)(

q−i
n−m)

(qn)
, as the

adversary have at enough nodes to cause an impeachment, but
not enough to control the quorum The probability of achieving
an impeachment level of i without hitting a malicious quorum
is Pr[imp to i] =

∏i−1
j=0 Pr[imp of i].

Alternatively, a malicious subgroup may attempt to cause
the system to prevent the creation of new blocks rather

than attempting to control the block creation process. In
this context, the adversary is not concerned with controlling
blocks. Instead, they are solely focused on impeachment.

Pr[imp to i] = Pr[imp to i− 1] ·
∑q

i=q−δi+1 (
i
m)(

q−i
n−m)

(qn)
.

Using the recommended settings of q = 16, δ = 13, ∆δ =
2 every 2, the probability of a malicious group being able to
take control of any given block at 50% corruption is 23.2%.
The probability of the malicious group taking control of 7
sequential blocks is 0.0074%.

Using the probabilities, we can examine the relationship
between the variables, including q, δ, and ∆δ, shown in
Figure 9. These graphs show some rather interesting trends.
First of all, it shows that at high levels of corruption, having
the threshold δ decreases the probability of malicious control.
Predictably, having a smaller δ also decreases the number of
impeachments. Additionally, the smaller initial δ does not have
a significantly higher probability of malicious control as the
quorum size increases. In regards to impeachment, having
a low ∆δ results in unacceptable impeachment levels that
increase as the quorum size increases. Having a high ∆δ that
scales with q appears to result in generally better statistics as
the quorum size increases. One notable aspect is the jagged
lines on (b), (c), (e), and (f). This is likely caused by the fact
that odd quorums have, proportionally, a higher minimum δ,
⌈q/2⌉ + 1. It appears that being able to reduce δ to a lower
value reduces the probability of the malicious party gaining
control the quorum. From Experiment VI-C, we know that
too low of an initial δ can result in more susceptibility to a
malicious takeover, so it is important to find a balance.

It is important to note that the use of impeachment to take
control over a block is a detectable malicious action, therefore

the malicious subgroup would want to use it sparingly, as
the network would likely remove the malicious nodes who
participated.

In leader selection protocols where the leader’s block is used
to select future leaders, there is a concern that a malicious
leader can manipulate their block to select a new leader
that they want rather than a random one. We have several
mitigations for this issue.

Our system uses blocks that are designed so that a set of
transactions can only result in one block headerHn. An honest
quorum member Pi attempts to add all of the transactions
from their mempool to the block Bn and expects all the valid
transactions from the skeleton blocks created by the other
quorum members to be added to Bn as well. Additionally,
Pi expects null transaction from each participating member of
Qn, not releasing their null transaction until all parties have
committed to their skeleton blocks. Therefore, the ability of
a minority of the Qn to manipulate the Bn is limited, as the
honest nodes would not sign a block with omissions. This
means that a block will not be manipulated by intentional
omissions unless at least δ nodes in the Qn are malicious.

If the adversary controls at least δ members of Qn, we
assume they have full control of Qn. We assume that the
adversary can precisely choose the future quorum members
that the block will select. This alone does not give the
adversary the ability to corrupt a future quorum, as block Bn
selects half of each quorum Bn+(β−1) and Bn+β . To control a
future quorum, the adversary needs two consecutive blocks or
randomly have an opportunity to gain control through random
chance or impeachment. To theoretically control every block,
they need to control β consecutive blocks. If they they control
less than β blocks, then every β blocks, they will choose the
the roster of one fewer quorums. In the unlikely event that the
adversary controls β consecutive quorums, the malicious group
will have control over the system for a number of blocks. Even
with 50% − 1 corruption with the malicious adversary using
our malicious strategy on a network with our recommended
settings, they were unable to maintain control of the network
for more than a few days. In our experiments, the malicious
subgroup never gained controlled β consecutive quorums.

VIII. SECURITY ANALYSIS

This section provide a formal analysis to show that a
minority in the quorum Qn with q members cannot exercise
significant control over the block header Hn. These proofs
show that partial malicious members of a quorum q′ < δ can
not manipulate quorum members selection means they can
only create a block or force an impeachment (if q′ > q − δ).

Proposition 1. If a selected quorum Qn with malicious
members q′ < δ broadcasts a valid block Bn with their round
n, then no member of Qn can broadcast another valid block
B′n in round n such that Bn ̸= B′n.

Proof. A valid block Bn must be signed by at least δ mem-
bers of Qn. The honest Qn members, who compose at least
q−(δ−1) members in theQn, would be in communication and

will, as a group, only sign one Bn. Therefore, the remaining
q′ members would be incapable of creating a valid B′n if Bn
is valid, as Bn is signed by δ members of Q.

To create a valid block B′n without the participation of the
honest members of Qn, the malicious members must either
forge their signatures or find a block with an identical MH.
Both of these strategies are infeasible, as they depend on
solving hard problems.

Proposition 2. If a quorum Qn with malicious members q′ <
δ is selected and releases a valid block Bn, then any valid Tx

proposed by an honest member of Qn will exist in Bn.

Proof. Assume Pi is an honest node and has transaction
Tx in their mempool. Pi creates a skeleton block SBi, which
includes Tx’s transaction header. Pi sends SBi to all members
of Qn, including the other honest nodes. The honest nodes will
request Tx if they do not possess it. After verifying Tx, they
will include Tx in their master block and produce a block
Bn. If the malicious nodes attempt to exclude Tx, they will
be creating a different block B′n. The parties now compare
their MHi. P (MHn = MH′

n|Bn ̸= B′n) is negligible(
≃ 1√

2129

)
, assuming a secure hash function with strong

collision resistance. Since the honest nodes will not sign
MH′

n, the block that does not contain Tx will not be valid.

Proposition 3. If a quorum Qn with malicious members q′ <
δ is selected, the ability of the malicious group to alter the
block header Hn of a valid Bn is limited to

∑q
k=q−δ

(
q′

q−k

)
possibilities.

Proof. Assuming that a set of transactions can only result
in one Hn, the only mechanism to change Hn would be to
change the set of transactions. Since each quorum member is
expected to produce a null transaction and there exists one
valid null transaction per quorum member, the contents of
block Bn are unknown to the malicious parties before the
beginning of the protocol. Therefore, the adversary does not
have the ability to alter their entries in their block skeletons to
produce predictable changes in the Hn, as the null transactions
are not released until the parties are committed to their skele-
ton block. The malicious parties, therefore, have only one point
at which they can choose between different block headers. This
point is when the honest nodes distribute their transactions. At
this point, the adversary can know the full contents of Bn and
can examine variants if combinations of their controlled parties
are omitted. Essentially, the parties are able to choose either to
continue with the protocol (and distribute their transactions) or
stop participating. Of the malicious group, up to q−δ can stop
participating and Bn can still be valid. Therefore, the number
of block headers they can choose from is

∑q
k=q−δ

(
q′

q−k

)
.

IX. CONCLUSION AND FUTURE WORK

In this work, we have presented ACCORD, a robust and
efficient consensus protocol that can support the scale and
critical nature of healthcare information. Our protocol achieves
fairness with a miner selection protocol that does not require
a network-wide synchronization and is capable of handling a

large number of nodes. Finally, based on the extensive exper-
imental evaluations, we determine it capable of functioning
during major network outages and also capable of resisting
attempts to manipulate the miner selection protocol. We also
provide threat risk assessment model and security analysis of
the proposed consensus protocol.

As for future work, our protocol could theoretically be
extended by investigating how to make the selections of the
quorum selection protocol only known to the quorum until
block creation to prevent DDOS attacks. It would also be in-
teresting to explore methods to select future quorums without
it being dependent on the list of transactions while continuing
to prevent indefinite foreknowledge of quorum membership.
This would negate the possibility of a malicious takeover of
the mining process as discussed in Experiment VI-C.

REFERENCES

[1] “Gaps in individuals’ information exchange,” Jul 2021. [Online].
Available: https://www.healthit.gov/data/quickstats/gaps- individuals-
information-exchange

[2] C. Johnson and Y. Pylypchuk, “Use of certified health it and methods
to enable interoperability by us non federal acute care hospitals,” 2021.

[3] “Why EHR data interoperability is such a mess,” Oct 2018,
[Online; accessed 9. Feb. 2021]. [Online]. Available: https://www.
healthcareitnews.com/news/why-ehr-data-interoperability-such-mess-3-
charts

[4] K. Caine, S. Kohn, C. Lawrence, R. Hanania, E. M. Meslin, and W. M.
Tierney, “Designing a patient-centered user interface for access decisions
about ehr data: implications from patient interviews,” Journal of general
internal medicine, vol. 30, no. 1, pp. 7–16, 2015.

[5] A. Dubovitskaya, Z. Xu, S. Ryu, M. Schumacher, and F. Wang, “Secure
and trustable electronic medical records sharing using blockchain,” in
AMIA annual symposium proceedings, vol. 2017.

[6] F. Greer, C. McLean, and T. Graham, “Caffeine, performance, and
metabolism during repeated wingate exercise tests,” Journal of applied
physiology, vol. 85, no. 4, pp. 1502–1508, 1998.

[7] J. Waller, K. McCaffery, H. Kitchener, J. Nazroo, and J. Wardle,
“Women’s experiences of repeated hpv testing in the context of cervical
cancer screening: a qualitative study,” Psycho-Oncology: Journal of the
Psychological, Social and Behavioral Dimensions of Cancer, 2007.

[8] K. Peterson, R. Deeduvanu, P. Kanjamala, and K. Boles, “A blockchain-
based approach to health information exchange networks,” in Proc. NIST
Workshop Blockchain Healthcare, vol. 1, no. 1, 2016, pp. 1–10.

[9] “HHS Rules to Health Data,” 2020. [Online]. Available: https:
//www.hhs.gov/about/news/2020/03/09/hhs-finalizes-historic-rules-to-
provide-patients-more-control-of-their-health-data.html

[10] C. T. Nguyen, D. T. Hoang, D. N. Nguyen, D. Niyato, H. T. Nguyen,
and E. Dutkiewicz, “Proof-of-stake consensus mechanisms for future
blockchain networks: fundamentals, applications and opportunities,”
IEEE Access, vol. 7, pp. 85 727–85 745, 2019.

[11] “Change Healthcare: blockchain with 30M tpd,” 2019, [Online; accessed
28. Jan. 2021]. [Online]. Available: https://www.ledgerinsights.com/
change-healthcare-enterprise-blockchain-with-30-million-transactions-
per-day

[12] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,”
Manubot, Tech. Rep., 2019.

[13] M. Vukolić, “The quest for scalable blockchain fabric: Proof-of-work vs.
bft replication,” in International workshop on open problems in network
security. Springer, 2015, pp. 112–125.

[14] G. Bashar, G. Hill, S. Singha, P. Marella, G. G. Dagher, and J. Xiao,
“Contextualizing consensus protocols in blockchain: A short survey,” in
2019 First IEEE International Conference on Trust, Privacy and Security
in Intelligent Systems and Applications (TPS-ISA), 2019, pp. 190–195.

[15] H. Sukhwani, J. M. Martínez, X. Chang, K. S. Trivedi, and A. Rindos,
“Performance modeling of pbft consensus process for permissioned
blockchain network (hyperledger fabric),” in 2017 IEEE 36th SRDS.

[16] A. Hasselgren, K. Kralevska, D. Gligoroski, S. A. Pedersen, and A. Fax-
vaag, “Blockchain in healthcare and health sciences—a scoping review,”
International Journal of Medical Informatics, vol. 134, p. 104040, 2020.

[17] W. Li, C. Feng, L. Zhang, H. Xu, B. Cao, and M. Imran, “A scalable
multi-layer pbft consensus for blockchain,” IEEE Transactions on Par-
allel and Distributed Systems, 12 2020.

[18] L. Lamport et al., “Paxos made simple,” ACM Sigact News, vol. 32,
no. 4, pp. 18–25, 2001.

[19] M. Castro, B. Liskov et al., “Practical byzantine fault tolerance,” in
OSDI, vol. 99, no. 1999, 1999, pp. 173–186.

[20] T. Nakagawa and N. Hayashibara, “Energy efficient raft consensus
algorithm,” in International Conference on Network-Based Information
Systems. Springer, 2017, pp. 719–727.

[21] K. Fan, S. Wang, Y. Ren, H. Li, and Y. Yang, “Medblock: Efficient and
secure medical data sharing via blockchain,” Journal of medical systems,
vol. 42, no. 8, p. 136, 2018.

[22] D. Malkhi and M. Reiter, “Byzantine quorum systems,” Distributed
computing, vol. 11, no. 4, pp. 203–213, 1998.

[23] K. Wüst and A. Gervais, “Do you need a blockchain?” in 2018 Crypto
Valley Conference on Blockchain Technology (CVCBT). IEEE, 2018.

[24] G. D. Bashar, A. A. Avila, and G. G. Dagher, “Poq: A consensus protocol
for private blockchains using intel sgx,” in International Conference on
Security and Privacy in Communication Systems. Springer, 2020.

[25] X. Liu, Z. Wang, C. Jin, F. Li, and G. Li, “A blockchain-based medical
data sharing and protection scheme,” IEEE Access, vol. 7, 2019.

[26] F. Tang, S. Ma, Y. Xiang, and C. Lin, “An efficient authentication scheme
for blockchain-based electronic health records,” IEEE access, 2019.

[27] M. Zghaibeh, U. Farooq, N. U. Hasan, and I. Baig, “Shealth: A
blockchain-based health system with smart contracts capabilities,” IEEE
Access, vol. 8, pp. 70 030–70 043, 2020.

[28] A. Azaria, A. Ekblaw, T. Vieira, and A. Lippman, “Medrec: Using
blockchain for medical data access and permission management,” in
2016 IEEE 2nd International Conference on OBD.

[29] D. Ivan, “Moving toward a blockchain-based method for the secure stor-
age of patient records,” in ONC/NIST Use of Blockchain for Healthcare
and Research Workshop, US, 2016.

[30] G. Zyskind, O. Nathan et al., “Decentralizing privacy: Using blockchain
to protect personal data,” in 2015 IEEE S&P Workshops.

[31] D. Chatzopoulos, S. Gujar, B. Faltings, and P. Hui, “Mneme: A mobile
distributed ledger,” in IEEE INFOCOM 2020 - IEEE Conference on
Computer Communications, 2020, pp. 1897–1906.

[32] Y. Gilad, R. Hemo, S. Micali, G. Vlachos, and N. Zeldovich, “Algorand:
Scaling byzantine agreements for cryptocurrencies,” in Proceedings of
the 26th Symposium on Operating Systems Principles, 2017, pp. 51–68.

[33] E. Buchman, “Tendermint: Byzantine fault tolerance in the age of
blockchains,” Ph.D. dissertation, University of Guelph, 2016.

[34] M. Yin, D. Malkhi, M. K. Reiter, G. G. Gueta, and I. Abraham, “Hot-
stuff: Bft consensus with linearity and responsiveness,” in Proceedings
of the 2019 ACM Symposium on Principles of Distributed Computing,
2019, pp. 347–356.

[35] G. Becker, “Merkle signature schemes, merkle trees and their cryptanal-
ysis,” Ruhr-University Bochum, Tech. Rep, vol. 12, p. 19, 2008.

[36] C. Decker and R. Wattenhofer, “Information propagation in the bitcoin
network,” in IEEE P2P 2013 Proceedings, 2013, pp. 1–10.

[37] D. Boneh, C. Gentry, B. Lynn, and H. Shacham, “Aggregate and
verifiably encrypted signatures from bilinear maps,” in Theory and
Applications of Cryptographic Techniques. Springer, 2003.

[38] J. K. Liu, V. K.-W. Wei, and D. S. Wong, “Linkable and anonymous
signature for ad hoc groups,” 2004.

[39] N. Van Saberhagen, “Cryptonote v 2.0,” 2013.
[40] C. Hazay and Y. Lindell, Efficient Secure Two-Party Protocols: Tech-

niques and Constructions, 1st ed. Berlin, Heidelberg: Springer-Verlag,
2010.

[41] A. Fiat and A. Shamir, “How to prove yourself: Practical solutions to
identification and signature problems,” in Advances in Cryptology —
CRYPTO’ 86, A. M. Odlyzko, Ed. Berlin, Heidelberg: Springer Berlin
Heidelberg, 1987, pp. 186–194.

[42] S. King and S. Nadal, “Peercoin–secure & sustainable cryptocoin,” Aug-
2012 [Online]. Available: https://peercoin.net/whitepaper, 2012.

https://www.healthit.gov/data/quickstats/gaps-individuals-information-exchange
https://www.healthit.gov/data/quickstats/gaps-individuals-information-exchange
https://www.healthcareitnews.com/news/why-ehr-data-interoperability-such-mess-3-charts
https://www.healthcareitnews.com/news/why-ehr-data-interoperability-such-mess-3-charts
https://www.healthcareitnews.com/news/why-ehr-data-interoperability-such-mess-3-charts
https://www.hhs.gov/about/news/2020/03/09/hhs-finalizes-historic-rules-to-provide-patients-more-control-of-their- health-data.html
https://www.hhs.gov/about/news/2020/03/09/hhs-finalizes-historic-rules-to-provide-patients-more-control-of-their- health-data.html
https://www.hhs.gov/about/news/2020/03/09/hhs-finalizes-historic-rules-to-provide-patients-more-control-of-their- health-data.html
https://www.ledgerinsights.com/change-healthcare-enterprise-blockchain-with-30-million-transactions- per-day
https://www.ledgerinsights.com/change-healthcare-enterprise-blockchain-with-30-million-transactions- per-day
https://www.ledgerinsights.com/change-healthcare-enterprise-blockchain-with-30-million-transactions- per-day

	Introduction
	Related Work
	Adversary model
	The ACCORD Protocol
	Mining Nodes
	Membership Service Authority
	Data Propagation
	Quorum
	Quorum selection protocol
	Greylisting
	Block structure
	Additive Signature
	Null Transaction
	Mempool
	Block Skeleton
	Communication in Block Creation
	Block Creation Protocol
	Synchronicity Model

	Mining rules
	Block status definitions
	Voting Rules
	Block acceptance procedure
	Impeachment

	Multiple Accepted Blocks

	Experimental Evaluation
	Communication costs
	Fault Tolerance
	Manipulation in selection
	Miner Selection Distribution

	Threat-Risk Assessment Model
	Fork Resistance
	Long-Range attack
	Future miners selection attack
	Statistical Analysis of Impeachment and Malicious Block Takeover

	Security Analysis
	Conclusion and Future Work
	References

