Ensuring Trustworthy Neural Network Training via Blockchain
IEEE CogMI 2023

Edgar Navarro Kyle Standing Gaby Dagher Tim Andersen

Nov 2, 2023
Motivation

• **Rise of AI:** The recent rise of Artificial Intelligence is fueling a growing need to ensure the integrity of AI models.

• **Integrity Concerns:** Two aspects of integrity are of particular concern.
 - Ensuring a model has not been compromised or “poisoned”.
 - Certifying the completion of training.

• **Complexity and Cost:** The evolution of AI creates more complex and expensive training, leading to difficulty in tracking the integrity of the process.
Challenges

- **Focus**: We focus on a subset of AI: neural networks.
- **Unique Challenges**: Neural networks pose unique challenges in verifying their integrity.
 - Given a trained model, it is impossible to derive details about the training process that the model underwent.
 - The “black-box” nature of neural nets further exacerbates the issue, making it difficult to understand the inner-workings of a model and how it reaches a particular outcome.
Our Proposed Solution

A Blockchain network, tasked with validating neural networks by intelligently retraining select portions of the training process to validate integrity of the resulting models.
Summary of Contributions

1. **Blockchain System:** Developed a system for efficient verification of neural network models using blockchain to ensure transparency and provide provenance.

2. **Weight-Analysis Algorithm:** Innovated a weight-analysis algorithm for intelligent distribution of training workload, optimizing computation and validation efficiency.

3. **Implementation and Testing:** Implemented and tested the proposed system within a functioning blockchain network, confirming robustness against adversarial attempts and demonstrating the accuracy and scalability of the algorithm.
Blockchain Technology and Quorum Consensus

- **Blockchain Technology**: A decentralized and distributed digital ledger that securely records transactions across multiple computers. Comprized of a network of nodes who collaborate to generate and validate new blocks.

- **Quorum Consensus**: A consensus process by which a new block is created. A random subset of nodes is chosen. The subset works together to propose, vote, and then broadcast new blocks to the rest of the network.
Blockchain Network for Model Verification

- **System Overview:**
 - *Submitters:* Provide trained models with detailed training information. All of this is packaged into a "transaction".
 - *Verifiers:* Complete the verification process and append approved transactions (models) into a new block to be added to the chain.

- **Verification Process:**
 1. Weight-analysis algorithm
 2. Re-training
Blockchain System

Figure: (1) Represents the model submitted for verification split into its sub intervals (2) Sub groups of the quorum that are selected to retrain specific intervals (3) The process of retraining
Weight-analysis Algorithm

<table>
<thead>
<tr>
<th>Method</th>
<th>P</th>
<th>R</th>
<th>F1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abs. Change</td>
<td>0.86</td>
<td>1.0</td>
<td>0.92</td>
</tr>
<tr>
<td>L2 Norm</td>
<td>0.80</td>
<td>0.67</td>
<td>0.73</td>
</tr>
<tr>
<td>Pct. Change</td>
<td>0.75</td>
<td>1.0</td>
<td>0.86</td>
</tr>
<tr>
<td>Cos. Dist.</td>
<td>0.11</td>
<td>0.17</td>
<td>0.13</td>
</tr>
</tbody>
</table>

Table: Performance metrics for different methods of analyzing changes in neural network weights.

- **Abrupt Shifts**: Distinguishable from gradual changes in normal training.
- **Approaches**: Four methods were tested - Absolute Change, L2 Norm, Percent Change, Cosine Distance.
- **Best Performance**: The Absolute Change method performed best.
Overview of Experiments

- **Weight-analysis Scalability Experiment:**
 - Evaluate scalability of the detection mechanism against model complexity.
 - Record and average computation times, identify thresholds of efficiency.

- **Robustness Experiment:**
 - Test network robustness against varying degrees and types of malicious nodes.
 - Measure performance based on model integrity verification accuracy.
Experimental Results - Graphical Overview

(a) Scalability Experiment

(b) Robustness Experiment

Figure: Aggregated experimental results showcasing the performance of the poisoning detection mechanism under different conditions.
Future Work

- **Enhanced Detection Methods**: Further refinement or development of new methods for improved detection rates or efficiency.

- **Real-world Applications**: Applying the solution to real-world scenarios for insights into practical performance and potential limitations.

- **Scalability**: Explore performance with larger and more complex models, and develop methods to further optimize computational efficiency.

- **Consensus Mechanism**: Enhance the quorum consensus mechanism for model verification, develop more efficient selection procedures, and incorporate additional checks.
Questions?