

CS-334 Algorithms of Machine Learning

Topic: Sequential Modeling Arthur Putnam

Overview

- Sequential data
- What we can do with sequential modeling
- What techniques are out there
- Introduction into Markov Chains

What is Sequential Data?

What comes to mind?

What is Sequential Data?

Sequential Data is any kind of data where the order "matters"

What makes **Sequential Data** different from Timeseries data?

Why is it important to know if our data is sequential?

When should we consider using a sequential approach?

When "critical" information is lost if the order is lost or not represented

Does the order of this data matter? Why or why not?

Hint: this may be trick question

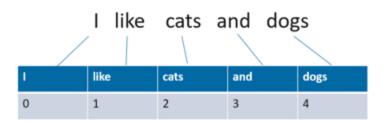
User Navigation

user	sequence
123	Homepage > Product1 > Privacy > Contact
456	Product 1 > Product 2 > Product 1 > Return Policy
789	Product 2

Events & System Logs

16:15:51,765	INFO	 Initializing database
16:15:55,218	INFO	 Database Service started
16:15:55,328	INFO	 Object-Relational Mapping Service
16:15:55,328	INFO	 Opening disk safes
16:16:03,468	INFO	 Disk Safe Service started
16:16:03,578	INFO	 Task Scheduler Service started
16:16:07,984		 Initializing Spring root WebApplic
16:16:13,312	INFO	 web Server Service started
16:16:13,312	INFO	 CDP Server 3.3.0 build 8004 Starte
16:16:13,328	INFO	 Creating default agent
16:16:13,921		 Product STANDARD_SERVER_VER3_TRIAL
16:16:13,921	INFO	 License validity(true/false): tru
16:16:13,921		 Valid until: 1/21/10 4:00 PM
16:16:13,921	INFO	 Allowed number of agents: 1
16:17:38,218	INFO	 Shutting down server
16:17:38,250	INFO	- Closing Spring root webApplication
16:17:38,296	INFO	 web Server Service shut down
16:17:38,296	INFO	 Task Scheduler Service shut down
16:17:38,296	INFO	 Closing disk safes
		*

Words in a sentence



Key takeaway: just because the data has a sequential element doesn't mean we should model it that way

What we can do with sequential modeling?

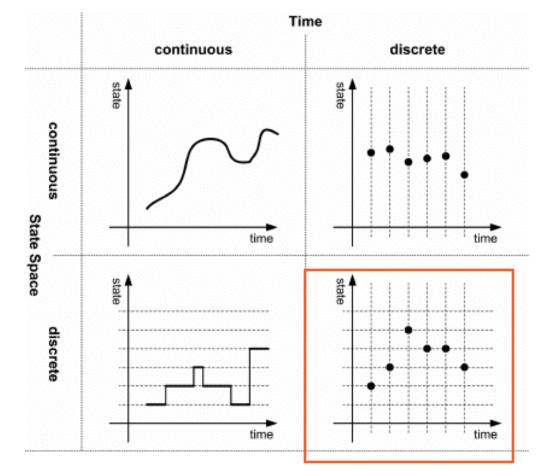
- Classification
- Predict the next item in the sequence
- Determine if a given sequence is normal or abnormal
- Use it to create generative Al

Common Ways to Model Sequential Data

service and the service of the servi

- Conditional Random Fields
- Recurrent Neural Networks (RNN)
- Markov Chains
- HMMs

Sequential State Spaces



For the rest of this lecture we are going to assume both time and states are discrete.

and the second state of the second

Sequential State Spaces

• Define a state space generically as:

State space = $S = \{s_0, s_1 \dots s_n\}$

• *s_i* represents a discrete state

State space contains all possible states for seen and unseen sequences

Sequence

• Let's define a sequence as

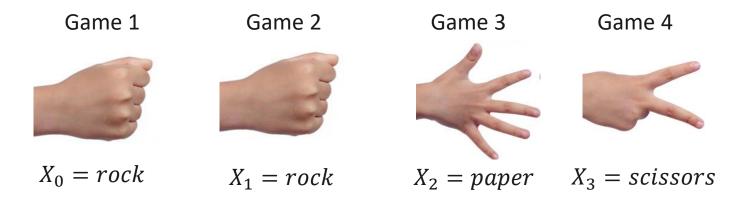
$$X = (X_t) = (X_0, X_1, X_2, \dots X_t)$$

 $\forall t \in \mathbb{N}, X_t \in \mathbb{S}$

- t represents a discrete timestep
- X_t represents the discrete state at time t
- X is an ordered list where each element is in the state space

Sequence Example

• Let $S = \{rock, paper, scissors\}$

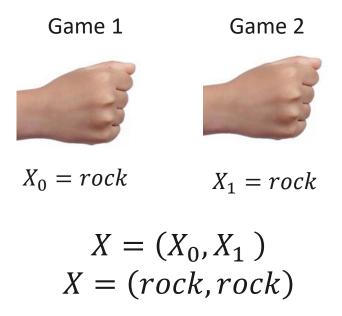


$$X = (X_0, X_1, X_2, X_3)$$

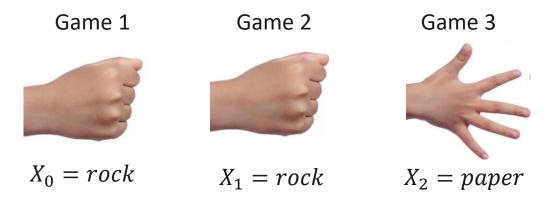
X = (rock, rock, paper, scissors)

Sequence Example 2

• Let $S = \{rock, paper, scissors\}$



Let's assume we are trying to predict the next move our opponent is going to make in a game of Rock, Paper, Scissors



Modeling Sequential Data

 One way we might model sequential data is via a probabilistic approach where we predict future states based on the present and the past

P(*future* | *present*, *past*)

Example Assumptions

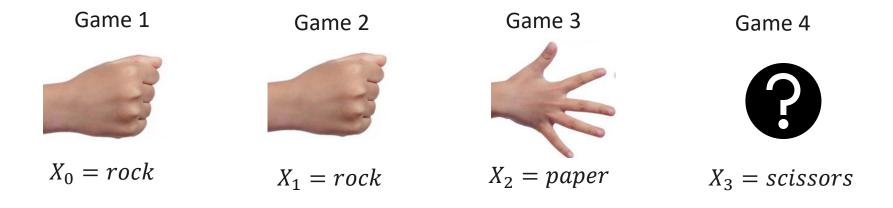
• Let's assume we already know the probability distribution

P(*future* | *present*, *past*)

A REAL PROPERTY AND A REAL PROPERTY AND A

• This probability distribution is based on our opponent's previous moves

P(future | present, past)



$$P(rock \mid X_2 = paper, X_1 = rock, X_0 = rock)$$

$$P(paper \mid X_2 = paper, X_1 = rock, X_0 = rock)$$

$$P(scissors \mid X_2 = paper, X_1 = rock, X_0 = rock)$$

• Let's assume

$$P(rock | X_2 = paper, X_1 = rock, X_0 = rock) = 0.3$$

 $P(paper | X_2 = paper, X_1 = rock, X_0 = rock) = 0.3$
 $P(scissors | X_2 = paper, X_1 = rock, X_0 = rock) = 0.4$

• What move should we go with?

$$P(scissors | X_2 = paper, X_1 = rock, X_0 = rock) = 0.4$$

First Approach Assessment

• What are some problems with this approach?

$$P(future | X_t, X_{t-1}, X_{t-2}, ..., X_0)$$

• How would we calculate the probability distribution, if it wasn't given to us?

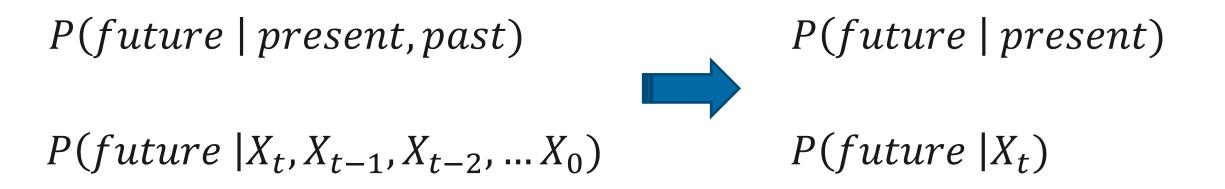
$$P(rock \mid X_2 = paper, X_1 = rock, X_0 = rock) = 0.3$$
$$P(paper \mid X_2 = paper, X_1 = rock, X_0 = rock) = 0.3$$
$$P(scissors \mid X_2 = paper, X_1 = rock, X_0 = rock) = 0.4$$

Markov Property

- Markov Property states that the conditional probability distribution of future states of the process depends only on the present state, not on the sequence of events that preceded it.
- Markov assumption is used to describe a model where the Markov property is assumed to hold

Loss and the second second

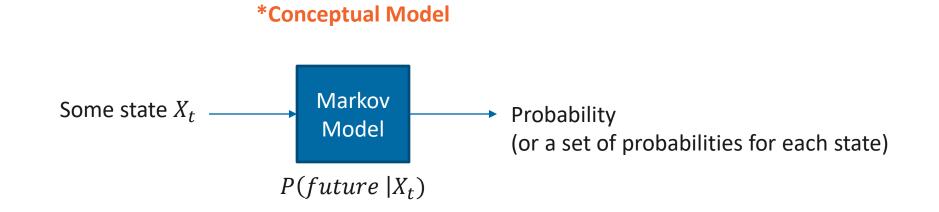
Using the Markov Property



This simplifies the probability function and is more robust at handling differently ordered sequences

Markov Chain

• A Markov chain is a stochastic model describing a sequence of possible events in which the probability of each event depends only on the state attained in the previous event.



*We will define this model more formally later

Visualization

https://setosa.io/ev/markov-chains/

Markov Chain

- Often considered to be "memory-less" thanks to the Markov Property
- Markov Model can take a sequence as input and produce
 - the probability of that sequence
 - or the probability of the next states in the sequence
- Is trained from empirical data
 - (multiset of sequences)
- Pros: easy to train, simple to understand

Let's Build a Markov Chain from Scratch

Contraction of the local division of the loc

- We need to:
 - Define the state space
 - Find the initial probabilities
 - Find the transition probabilities
- Data Set
 - Sequences:
 - RRPSSRPSRP
 - PPPSPSPSRR
 - RPSSPSRPSP
 - R = Rock, P = Paper, S = Scissors

Define the state space

Empirical data:

- RRPSSRPSRP
- PPPSPSPSRR
- RPSSPSRPSP

 $\mathbb{S} = \{R, P, S\}$

Find the Initial Probabilities

Empirical data:

- RRPSSRPSRP
- PPPSPSPSRR
- RPSSPSRPSP

R starting Probability	P starting Probability	S starting Probability
2/3 = 0.666	1/3 = 0.333	0/3 = 0

Empirical data:

- RRPSSRPSRP
- PPPSPSPSRR
- RPSSPSRPSP

$$P(X_{t+1} = R \mid X_t = R)$$

 $\frac{Number of pairs where X_t, X_{t+1} is seen}{Number of X_t}$

State Transitions	$P(X_{t+1} X_t)$
RR	2/7
RP	
RS	
PR	
РР	
PS	
SR	
SP	
SS	

Empirical data:

- RRPSSRPSRP
- PPPSPSPSRR
- **RPSSPSRPSP**

 $P(X_{t+1} = \mathbf{R} | X_t = \mathbf{P})$

 $\frac{Number of pairs where X_t, X_{t+1} is seen}{Number of X_t}$

State Transitions	$P(X_{t+1} X_t)$
RR	2/7
RP	5/7
RS	
PR	
PP	
PS	
SR	
SP	
SS	

and the second second second

Empirical data:

- RRPSSRPSRP
- PPPSPSPSRR
- RPSSPSRPSP

 $P(X_{t+1} = \mathbb{R} | X_t = \mathbb{S})$

 $\frac{Number of pairs where X_t, X_{t+1} is seen}{Number of X_t}$

State Transitions	$P(X_{t+1} X_t)$
RR	2/7
RP	5/7
RS	0/7
PR	
PP	
PS	
SR	
SP	
SS	

and the second second second

Empirical data:

- RRPSSRPSRP
- PPPSPSPSRR
- RPSSPSRPSP

 $P(X_{t+1} | X_t)$

 $\frac{Number of pairs where X_t, X_{t+1} is seen}{Number of X_t}$

State Transitions	$P(X_{t+1} X_t)$
RR	2/7 = 0.285
RP	5/7 = 0.714
RS	0/7 = 0
PR	0/10 = 0
PP	2/10 = 0.2
PS	8/10 = 0.8
SR	4/10 = 0.4
SP	4/10 = 0.4
SS	2/10 = 0.2

So now we have...

Initial Probabilities

R starting Probability	P starting Probability	S starting Probability
2/3 = 0.666	1/3 = 0.333	0/3 = 0

Now we should be able to calculate the probability of the sequence of: RPS

Transition Probabilities

State Transitions	$P(X_{t+1} X_t)$
RR	2/7 = 0.285
RP	5/7 = 0.714
RS	0/7 = 0
PR	0/10 = 0
РР	2/10 = 0.2
PS	8/10 = 0.8
SR	4/10 = 0.4
SP	4/10 = 0.4
SS	2/10 = 0.2

So now we have...

Initial Probabilities

Transition Probabilities

R starting Probability	P starting Probability	S starting Probability
2/3 = 0.666	1/3 = 0.333	0/3 = 0

calculate the probability of the sequence of: RPS

$$P(X_0 = R) * P(X_1 = P | X_0 = R) * P(X_2 = S | X_1 = P)$$
$$\frac{2}{3} * \frac{5}{7} * \frac{8}{10} = \frac{80}{210} = \frac{8}{21} \approx 0.38$$

State Transitions	$P(X_{t+1} X_t)$
RR	2/7 = 0.285
RP	5/7 = 0.714
RS	0/7 = 0
PR	0/10 = 0
PP	2/10 = 0.2
PS	8/10 = 0.8
SR	4/10 = 0.4
SP	4/10 = 0.4
SS	2/10 = 0.2

Looking up each probability is still tedious

- Lucky we can redefine this process as a series of matrix multiplications
- We can also define 1xN (denoted by π) vector to represent our initial state probabilities
- We can define a NxN matrix (denoted by P) which represents the transition probabilities
- From there we can use

 $P(sequence) = \pi_{starting_state} * P_{transition_1} * P_{transition_2} \dots * P_{transition_n}$

States and a state of the second states of the seco

Initial State Probabilities

• We can also define 1xN (denoted by π) vector to represent our initial state probabilities

$$\pi = \left[p_{\mathbb{S}_{inital_1}}, p_{\mathbb{S}_{inital_2}}, \dots p_{\mathbb{S}_{inital_n}} \right]$$

Initial Probabilities

R starting Probability	P starting Probability	S starting Probability
2/3 = 0.666	1/3 = 0.333	0/3 = 0

$$\pi = [0.666, 0.333, 0]$$
$$\mathbb{S} = \{R, P, S\}$$

Transition Matrix

 Let p be an NxN matrix where N is the number of discrete states

$$\mathbf{P} = \begin{bmatrix} p_{11} & p_{12} & \cdots & p_{1n} \\ p_{21} & p_{22} & \cdots & p_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ p_{n1} & p_{n2} & \cdots & p_{nn} \end{bmatrix}$$

 $P = \begin{array}{ccc} R & P & S \\ P &= \begin{array}{ccc} R & 0.285 & 0.714 & 0 \\ 0 & 0.2 & 0.8 \\ S & 0.4 & 0.4 & 0.2 \end{array} \right]$

Transition Probabilities

State Transitions	$P(X_{t+1} X_t)$	
RR	2/7 = 0.285	
RP	5/7 = 0.714	
RS	0/7 = 0	
PR	0/10 = 0	
РР	2/10 = 0.2	
PS	8/10 = 0.8	
SR	4/10 = 0.4	
SP	4/10 = 0.4	
SS	2/10 = 0.2	

*Assume S is ordered

 $P_{ij} = P(\mathbb{S}_j | \mathbb{S}_i)$

 $P_{ij} = P(\mathbb{S}_j | \mathbb{S}_i)$ $\mathbb{S} = \{R, P, S\}$

Markov Chain

• We can now calculate the probability of a sequence by "chaining" together the elements of the matrix

 $P(sequence) = \pi_{starting_state} * P_{transition_1} * P_{transition_2} \dots * P_{transition_n}$

Let's check

Previously we calculated the probability of the sequence of: RPS using the "old" method. Let's try the matrix method.

$$P(X_0 = R) * P(X_0 = P | X_0 = R) * P(X_1 = S | X_1 = P)$$

$$\pi = \begin{bmatrix} 0.666, 0.333, 0 \end{bmatrix}$$

$$\frac{2}{3} * \frac{5}{7} * \frac{8}{10} = \frac{8}{21} \approx 0.38$$

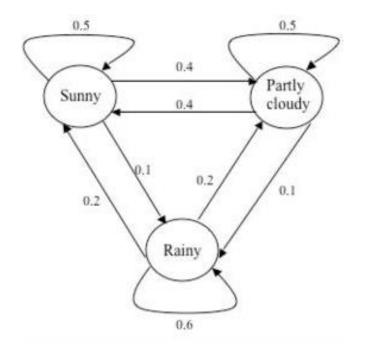
$$P = \begin{bmatrix} R \\ P \\ S \end{bmatrix} \begin{bmatrix} 0.285 & 0.714 & 0 \\ 0 & 0.2 & 0.8 \\ 0.4 & 0.4 & 0.2 \end{bmatrix}$$

 $\pi_1 * P_{12} * P_{23}$ 0.666 * 0.714 * 0.8 = 0.38

Your Turn! Class Challenge

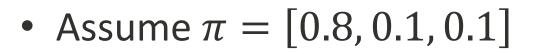
- Assume $S = \{S, P, R\}$
- Assume $\pi = [0.8, 0.1, 0.1]$
- Create the Transition matrix P

Try to find the probability for:
 – SPR



Your Turn! Class Challenge

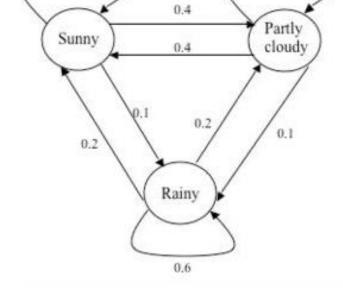
• Assume $S = \{S, P, R\}$



• Try to find the probability for:

– SPR

	0.5	0.4	0.1]
P =	0.4	0.5	0.1
	0.2	0.2	0.6



0.5

 $\pi_1 * p_{12} * p_{23} = 0.8 * 0.4 * 0.1 = 0.032$

https://setosa.io/ev/markov-chains/

0.5

So what can we do with our Markov chain

- Calculate the probability of a sequence
 - This is useful for comparing on sequence to another
 - We could also use this to classify by pick a probability cutoff point
- We can calculate the probability of ending in state S after some number of transitions T

the second s

Recommended Next Steps

- Hidden Markov Models (HMM)
 - We are making the assumptions that are likely untrue, HMMs help address or model hidden states
- Smoothing & Normalization
 - Some transitions might never happen in our data set, thus the probability will be zero which is probably not what we want

Income the second second diversion

Arthur Putnam Email: <u>arthurputnam@boisestate.edu</u>

THANK YOU

