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CS-334
Algorithms of Machine Learning

Topic: Sequential Modeling
Arthur Putnam



Overview

Sequential data
What we can do with sequential modeling
What techniques are out there

Introduction into Markov Chains




What is Sequential Data?

What comes to mind?




What is Sequential Data?

Sequential Data is any kind of data where the order “matters”

What makes Sequential Data different from Timeseries data?




Why is it important to know if our data is sequential ?

When should we consider using a sequential approach?

|H

information is lost if the order is lost or not represented

When “critica
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Does the order of this data matter? Why or why not?

User Navigation

user sequence

123 Homepage > Product = Privacy = Contact

456 Product 1 = Product 2 = Product 1 = Return Policy
789 Product 2

Hint: this may be trick question

Events & System Logs

251, 765
:55,218
195,348

INFO
INFO
INFOD
INFO
INFO
INFQ
INFD
INFQ
INFQ
INFQ
INFD
INFQ
INFQ
INFQ
INFQ
INFQ
INFQ
INFQ
INFOD

initiaTizing databasze

patabase Service started
object-relational Mapping Service
opening disk safes

pisk safe service starved

= Task Scheduler Service started

:ritiQTﬁ:inq S;P!ng root webapplic
web Server Iervice started

CoP Server 3.3.0 build 8004 Starte
creating default agent

Product STANDARD_SERVER_VERI_TRIAL
License validity(rrue/false): tru
valdd untdl: 1721700 4:00 PM
Allowed number of agents: 1
Shutting down server

Closing Spring root webapplication
web Server Service shut down

Task Scheduler Service shut down
Closing disk safes

Words in a sentence

| like cats and dogs

O N N N
0 1 2 3 4

Key takeaway: just because the data has a sequential element doesn’t mean we should model it that way
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What we can do with sequential modeling?

Classification

Predict the next item in the sequence

Determine if a given sequence is normal or abnormal

Use it to create generative Al




Common Ways to Model Sequential Data

Conditional Random Fields

Recurrent Neural Networks (RNN)
Markov Chains
HMMs
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Sequential State Spaces

Time
continuous discrete
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For the rest of this lecture we are going to assume both time and states are discrete.
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Sequential State Spaces

* Define a state space generically as:

State space =S = {sg, 51 ... S, }

* s; represents a discrete state

* State space contains all possible states for seen and unseen
sequences




Sequence

Let’s define a sequence as

X = (Xt) — (XO'XliXZJ Xt)

VtEN, X, €S

t represents a discrete timestep
X represents the discrete state at time ¢
X is an ordered list where each element is in the state space
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Sequence Example

* Let S = {rock,paper, scissors}

Game 1 Game 2 Game 3 Game 4

,ml 3 ﬂ[ " 4 -

Xo =rock X, =rock X, = paper X3 = scissors

X = (X01X11X2)X3)
X = (rock,rock,paper, scissors)
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Sequence Example 2

* Let S = {rock,paper, scissors}

Game 1 Game 2

Xy =rock X{ =rock

X = (X0, X1)
X = (rock,rock)




Let’s assume we are trying to predict the next move
our opponent is going to make in a game of
Rock, Paper, Scissors

Game 1 Game 2




Modeling Sequential Data

 One way we might model sequential data is via a probabilistic
approach where we predict future states based on the present
and the past

P(future | present, past)




Example Assumptions

* Let’s assume we already know the probability distribution

P(future | present,past)

* This probability distribution is based on our opponent's
previous moves
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P(future | present,past)

Game 1 Game 2 Game 3 Game 4
Xy =rock X, =rock X, = paper X3 = scissors

P(rock | X, = paper, X, = rock, X, = rock)
P(paper | X, = paper,X; = rock, X, = rock)
P(scissors | X, = paper,X; = rock, X, = rock)
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e Let’s assume

P(rock | X, = paper,X; = rock, X, = rock) =0.3
P(paper | X, = paper,X, = rock,X, = rock) = 0.3
P(scissors | X, = paper,X; = rock, X, = rock) = 0.4

 What move should we go with?

P(scissors | X, = paper,X; = rock, X, = rock) = 0.4
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Opponent

Our Prediction

Our Move
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First Approach Assessment

 What are some problems with this approach?

P(future | X, Xi—1, Xi—9, ... Xo)

* How would we calculate the probability distribution, if it
wasn’t given to us?

P(rock | X, = paper,X,; = rock,X, = rock) =0.3
P(paper | X, = paper,X; = rock,X, = rock) = 0.3

P(scissors | X, = paper,X; = rock, X, = rock) = 0.4




Markov Property

 Markov Property states that the conditional probability
distribution of future states of the process depends only on
the present state, not on the sequence of events that preceded

It.

 Markov assumption is used to describe a model where the
Markov property is assumed to hold




Using the Markov Property

P(future | present, past) P(future | present)

—

P(future | X, Xi—1, Xi—o, ... Xo) P(future |X;)

This simplifies the probability function and is more robust at handling differently ordered sequences
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Markov Chain

* A Markov chain is a stochastic model describing a sequence of
possible events in which the probability of each event depends
only on the state attained in the previous event.

*Conceptual Model

Some state X; I\I<I/|aor§3/ Probability
(or a set of probabilities for each state)

P(future |X;)

*We will define this model more formally later
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Visualization

https://setosa.io/ev/markov-chains/
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https://setosa.io/ev/markov-chains/
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Markov Chain

e Often considered to be “memory-less” thanks to the Markov Property

 Markov Model can take a sequence as input and produce
— the probability of that sequence
— or the probability of the next states in the sequence

* |strained from empirical data
— (multiset of sequences)

* Pros: easy to train, simple to understand
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Let’s Build a Markov Chain from Scratch

 We need to:
— Define the state space
— Find the initial probabilities
— Find the transition probabilities

e Data Set

— Sequences:
* RRPSSRPSRP
* PPPSPSPSRR
* RPSSPSRPSP

— R =Rock, P = Paper, S = Scissors




Define the state space

Empirical data:
* RRPSSRPSRP
* PPPSPSPSRR
* RPSSPSRPSP

S = {R,P,S)




=
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Find the Initial Probabilities

Empirical data:

* RRPSSRPSRP
* PPPSPSPSRR
* RPSSPSRPSP

R starting Probability P starting Probability S starting Probability

2/3 =0.666 1/3=0.333 0/3=0
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Find the Transition Probabilities

Empirical data:

. RRPSSRPSRP

* PPPSPSPSRR i 2/7

« RPSSPSRPSP RP
RS

PR

P(X¢41 = R |X; = R) P
PS

SR
SP
SS

Number of pairs where X;, X1 IS seen
Number of X;
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Find the Transition Probabilities

Empirical data:

« RRPSSRPSR?

* PPPSPSPSRR i 2/7
« RPSSPSRPSP v 2l
RS
PR
P(Xt+1=R|Xt=P) A
PS
SR
Number of pairs where X;, X1 IS seen SP

Number of X, SS
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Find the Transition Probabilities

Empirical data:

. RRPSSRPSRP

* PPPSPSPSRR i 2/7
+ RPSSPSRPSP P >/
RS 0/7
PR
P(Xt41 =R |Xe = 5) P
PS
SR
Number of pairs where X;, X1 IS seen SP

Number of X, SS

Boise State University
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Find the Transition Probabilities

Empirical data:

« RRPSSRPSR?

* PPPSPSPSRR i 2/7=0.285
» RPSSPSRPSP P S0
RS 0/7=0
PR 0/10=0
P(Xt+1 |Xt) PP 2/10=0.2
PS 8/10=0.8
SR 4/10 = 0.4
Number of pairs where X;, X1 IS seen SP 4/10=0.4

Number of X; SS 2/10=0.2

Boise State University



BOISE STATE UNIVERSITY

So now we have...

Initial Probabilities Transition Probabilities

R starting Probability | P starting Probability | S starting Probability P(Xt11lXt)

2/3 =0.666 1/3 =0.333 0/3=0 2/7 =0.285
RP 5/7 =0.714

RS 0/7=0

PR 0/10=0

Now we should be able to calculate the /

bability of th f: RPS - 219702
probability of the sequence of: oc o100
SR 4/10=0.4
SP 4/10=0.4

SS 2/10=0.2

Boise State University
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So now we have...

Initial Probabilities Transition Probabilities

R starting Probability | P starting Probability | S starting Probability P(Xt11lXt)

2/3 =0.666 1/3 = 0.333 0/3=0 2/7=0.285
RP 5/7 = 0.714
. , RS 0/7=0
calculate the probability of the sequence of: RPS
PR 0/10=0
PP 2/10=0.2
2 5 8 80 8 SR 4/10=0.4
3*7*T0° 210 21 3% Sp 4/10=0.4

SS 2/10=0.2
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Looking up each probability is still tedious

Lucky we can redefine this process as a series of matrix multiplications

We can also define 1xN (denoted by i) vector to represent our initial state
probabilities

We can define a NxN matrix (denoted by P) which represents the transition
probabilities

From there we can use

P(sequence) = TMstarting_state * Ptransition1 8 Ptransitionz o * Prransition n
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Initial State Probabilities

* We can also define 1xN (denoted by i) vector to represent our
initial state probabilities

T = lpSinitall' PSinitar,” = pSinitaln]

Initial Probabilities

R starting Probability | P starting Probability | S starting Probability

2/3 = 0.666 1/3=0.333 0/3=0 S ={R,P,S}

m = [0.666,0.333,0]
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Transition Matrix

* Let p be an NxN matrix where N is the number of discrete
states

i Py R P S
511 Zpolz - p;: R 0_2 8 5 O. 7 14 0 Transition Probabilities
p=|"2t T2 P=7pP| O 02 0.8
P sl o4 04 02 . o
Pn1 Pn2 - Pnnl RS o;m'
. 002
PS 8/10=0.8
SR 4/10=0.4
p.. — P S S sp 4/10=0.4
lj ( ]l l) Pl] — P(Sjlsl) SS 2/10=0.2
N )
Assume S is ordered S = (R,P,S)
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Markov Chain

* We can now calculate the probability of a sequence by
“chaining” together the elements of the matrix

P(Sequence) = TMstarting_state * Ptransition1 * Ptransitionz T Ptransition_n
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Let’s check

Previously we calculated the probability of the sequence of: RPS
using the “old” method. Let’s try the matrix method.

P(Xo =R)*P(Xy =P|Xo =R)*P(X; =S| X, = P) = [0.666,0.333, 0]

R P S
>t g g R10.285 0.714 0
—x—%x— = — =~ (.38 P =p 0 0.2 0.8
3 7 10 21 sl 04 04 02

Ty * Piy * Py3
0.666 «0.714 « 0.8 = 0.38




Your Turn! Class Challenge

Assume S = {S, P, R}
Assume ™ = [0.8,0.1, 0.1]
Create the Transition matrix P

Try to find the probability for:
— SPR
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Your Turn! Class Challenge

* Assume S ={S,P,R}
 Assumerw = [0.8,0.1,0.1]

* Try to find the probability for:
— SPR

Partly
cloudy

P=104 05 0.1

0.2 0.2 0.6

0.5 04 0.1]

1 * P12 * Pz = 0.8 0.4 % 0.1 = 0.032

https://setosa.io/ev/markov-chains/
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So what can we do with our Markov chain

* Calculate the probability of a sequence
— This is useful for comparing on sequence to another
— We could also use this to classify by pick a probability cutoff point

* We can calculate the probability of ending in state S after some
number of transitions T




Recommended Next Steps

 Hidden Markov Models (HMM)

— We are making the assumptions that are likely untrue, HMMs help
address or model hidden states

 Smoothing & Normalization

— Some transitions might never happen in our data set, thus the
probability will be zero which is probably not what we want
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Arthur Putnam
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