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CS-334
Algorithms of Machine Learning

Topic: Sequential Modeling

Arthur Putnam
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Overview

• Sequential data

• What we can do with sequential modeling 

• What techniques are out there

• Introduction into Markov Chains
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What is Sequential Data?
What comes to mind?
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What is Sequential Data?

Sequential Data is any kind of data where the order “matters” 

What makes Sequential Data different from Timeseries data?
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Why is it important to know if our data is sequential ?
When should we consider using a sequential approach?

When “critical” information is lost if the order is lost or not represented 
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Does the order of this data matter? Why or why not?
Hint: this may be trick question

Key takeaway: just because the data has a sequential element doesn’t mean we should model it that way 
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What we can do with sequential modeling?

• Classification

• Predict the next item in the sequence

• Determine if a given sequence is normal or abnormal

• Use it to create generative AI 



Boise State University 8

Common Ways to Model Sequential Data

• Conditional Random Fields

• Recurrent Neural Networks (RNN)

• Markov Chains

• HMMs
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Sequential State Spaces

For the rest of this lecture we are going to assume both time and states are discrete. 
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Sequential State Spaces

• Define a state space generically as: 

• 𝑠𝑖 represents a discrete state

• 𝑆𝑡𝑎𝑡𝑒 𝑠𝑝𝑎𝑐𝑒 contains all possible states for seen and unseen 
sequences

𝑆𝑡𝑎𝑡𝑒 𝑠𝑝𝑎𝑐𝑒 = 𝕊 = {𝑠0, 𝑠1…𝑠𝑛}
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Sequence
• Let’s define a sequence as

• t represents a discrete timestep

• 𝑋𝑡 represents the discrete state at time 𝑡

• 𝑋 is an ordered list where each element is in the state space

𝑋 = 𝑋𝑡 = 𝑋0, 𝑋1, 𝑋2, …𝑋𝑡

∀𝑡 ∈ ℕ, 𝑋𝑡 ∈ 𝕊
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Sequence Example 

• Let 𝕊 = {𝑟𝑜𝑐𝑘, 𝑝𝑎𝑝𝑒𝑟, 𝑠𝑐𝑖𝑠𝑠𝑜𝑟𝑠}

𝑋 = 𝑋0, 𝑋1, 𝑋2, 𝑋3
𝑋 = 𝑟𝑜𝑐𝑘, 𝑟𝑜𝑐𝑘, 𝑝𝑎𝑝𝑒𝑟, 𝑠𝑐𝑖𝑠𝑠𝑜𝑟𝑠

Game 2Game 1 Game 3 Game 4

𝑋0 = 𝑟𝑜𝑐𝑘 𝑋1 = 𝑟𝑜𝑐𝑘 𝑋2 = 𝑝𝑎𝑝𝑒𝑟 𝑋3 = 𝑠𝑐𝑖𝑠𝑠𝑜𝑟𝑠
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Sequence Example 2 

• Let 𝕊 = {𝑟𝑜𝑐𝑘, 𝑝𝑎𝑝𝑒𝑟, 𝑠𝑐𝑖𝑠𝑠𝑜𝑟𝑠}

𝑋 = 𝑋0, 𝑋1
𝑋 = 𝑟𝑜𝑐𝑘, 𝑟𝑜𝑐𝑘

Game 2Game 1

𝑋0 = 𝑟𝑜𝑐𝑘 𝑋1 = 𝑟𝑜𝑐𝑘
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Let’s assume we are trying to predict the next move  
our opponent is going to make in a game of 

Rock, Paper, Scissors

Game 2Game 1 Game 3

𝑋0 = 𝑟𝑜𝑐𝑘 𝑋1 = 𝑟𝑜𝑐𝑘 𝑋2 = 𝑝𝑎𝑝𝑒𝑟
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Modeling Sequential Data

• One way we might model sequential data is via a probabilistic 
approach where we predict future states based on the present 
and the past

𝑃 𝑓𝑢𝑡𝑢𝑟𝑒 𝑝𝑟𝑒𝑠𝑒𝑛𝑡, 𝑝𝑎𝑠𝑡)
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Example Assumptions

• Let’s assume we already know the probability distribution

• This probability distribution is based on our opponent's 
previous moves

𝑃 𝑓𝑢𝑡𝑢𝑟𝑒 𝑝𝑟𝑒𝑠𝑒𝑛𝑡, 𝑝𝑎𝑠𝑡)
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𝑃 𝑓𝑢𝑡𝑢𝑟𝑒 𝑝𝑟𝑒𝑠𝑒𝑛𝑡, 𝑝𝑎𝑠𝑡)

𝑃 𝑟𝑜𝑐𝑘 𝑋2 = 𝑝𝑎𝑝𝑒𝑟, 𝑋1 = 𝑟𝑜𝑐𝑘, 𝑋0 = 𝑟𝑜𝑐𝑘)

Game 2Game 1 Game 3 Game 4

𝑋0 = 𝑟𝑜𝑐𝑘 𝑋1 = 𝑟𝑜𝑐𝑘 𝑋2 = 𝑝𝑎𝑝𝑒𝑟 𝑋3 = 𝑠𝑐𝑖𝑠𝑠𝑜𝑟𝑠

𝑃 𝑝𝑎𝑝𝑒𝑟 𝑋2 = 𝑝𝑎𝑝𝑒𝑟, 𝑋1 = 𝑟𝑜𝑐𝑘, 𝑋0 = 𝑟𝑜𝑐𝑘)

𝑃 𝑠𝑐𝑖𝑠𝑠𝑜𝑟𝑠 𝑋2 = 𝑝𝑎𝑝𝑒𝑟, 𝑋1 = 𝑟𝑜𝑐𝑘, 𝑋0 = 𝑟𝑜𝑐𝑘)
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• Let’s assume

• What move should we go with?

𝑃 𝑟𝑜𝑐𝑘 𝑋2 = 𝑝𝑎𝑝𝑒𝑟, 𝑋1 = 𝑟𝑜𝑐𝑘, 𝑋0 = 𝑟𝑜𝑐𝑘) = 0.3

𝑃 𝑝𝑎𝑝𝑒𝑟 𝑋2 = 𝑝𝑎𝑝𝑒𝑟, 𝑋1 = 𝑟𝑜𝑐𝑘, 𝑋0 = 𝑟𝑜𝑐𝑘) = 0.3

𝑃 𝑠𝑐𝑖𝑠𝑠𝑜𝑟𝑠 𝑋2 = 𝑝𝑎𝑝𝑒𝑟, 𝑋1 = 𝑟𝑜𝑐𝑘, 𝑋0 = 𝑟𝑜𝑐𝑘) = 0.4

𝑃 𝑠𝑐𝑖𝑠𝑠𝑜𝑟𝑠 𝑋2 = 𝑝𝑎𝑝𝑒𝑟, 𝑋1 = 𝑟𝑜𝑐𝑘, 𝑋0 = 𝑟𝑜𝑐𝑘) = 0.4



Boise State University 19

Game 4

Opponent 

Our Move 

Our Prediction 
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First Approach Assessment

• What are some problems with this approach?

• How would we calculate the probability distribution, if it 
wasn’t given to us?

𝑃 𝑟𝑜𝑐𝑘 𝑋2 = 𝑝𝑎𝑝𝑒𝑟, 𝑋1 = 𝑟𝑜𝑐𝑘, 𝑋0 = 𝑟𝑜𝑐𝑘) = 0.3

𝑃 𝑝𝑎𝑝𝑒𝑟 𝑋2 = 𝑝𝑎𝑝𝑒𝑟, 𝑋1 = 𝑟𝑜𝑐𝑘, 𝑋0 = 𝑟𝑜𝑐𝑘) = 0.3

𝑃 𝑠𝑐𝑖𝑠𝑠𝑜𝑟𝑠 𝑋2 = 𝑝𝑎𝑝𝑒𝑟, 𝑋1 = 𝑟𝑜𝑐𝑘, 𝑋0 = 𝑟𝑜𝑐𝑘) = 0.4

𝑃 𝑓𝑢𝑡𝑢𝑟𝑒 𝑋𝑡 , 𝑋𝑡−1, 𝑋𝑡−2, … 𝑋0)
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Markov Property

• Markov Property states that the conditional probability 
distribution of future states of the process depends only on 
the present state, not on the sequence of events that preceded 
it.

• Markov assumption is used to describe a model where the 
Markov property is assumed to hold
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Using the Markov Property

𝑃 𝑓𝑢𝑡𝑢𝑟𝑒 𝑝𝑟𝑒𝑠𝑒𝑛𝑡, 𝑝𝑎𝑠𝑡) 𝑃 𝑓𝑢𝑡𝑢𝑟𝑒 𝑝𝑟𝑒𝑠𝑒𝑛𝑡)

𝑃 𝑓𝑢𝑡𝑢𝑟𝑒 𝑋𝑡 , 𝑋𝑡−1, 𝑋𝑡−2, … 𝑋0) 𝑃 𝑓𝑢𝑡𝑢𝑟𝑒 𝑋𝑡)

This simplifies the probability function and is more robust at handling differently ordered sequences 
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Markov Chain

• A Markov chain is a stochastic model describing a sequence of 
possible events in which the probability of each event depends 
only on the state attained in the previous event.

Markov 
Model

Some state 𝑋𝑡

*Conceptual Model

*We will define this model more formally later

Probability  
(or a set of probabilities for each state)

𝑃 𝑓𝑢𝑡𝑢𝑟𝑒 𝑋𝑡)
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Visualization

https://setosa.io/ev/markov-chains/

https://setosa.io/ev/markov-chains/


Boise State University 25

Markov Chain
• Often considered to be “memory-less” thanks to the Markov Property

• Markov Model can take a sequence as input and produce
– the probability of that sequence

– or the probability of the next states in the sequence 

• Is trained from empirical data 
– (multiset of sequences)

• Pros: easy to train, simple to understand
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Let’s Build a Markov Chain from Scratch
• We need to:

– Define the state space

– Find the initial probabilities 

– Find the transition probabilities

• Data Set
– Sequences: 

• RRPSSRPSRP

• PPPSPSPSRR

• RPSSPSRPSP

– R = Rock, P = Paper, S = Scissors 
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Define the state space

Empirical data:
• RRPSSRPSRP

• PPPSPSPSRR

• RPSSPSRPSP

𝕊 = {𝑅, 𝑃, 𝑆}
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Find the Initial Probabilities

Empirical data:
• RRPSSRPSRP

• PPPSPSPSRR

• RPSSPSRPSP

R starting Probability P starting Probability S starting Probability

2/3 = 0.666 1/3 = 0.333 0/3 = 0
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Find the Transition Probabilities

Empirical data:
• RRPSSRPSRP

• PPPSPSPSRR

• RPSSPSRPSP

State Transitions 𝑃 𝑋𝑡+1 𝑋𝑡)

RR 2/7

RP

RS

PR

PP

PS

SR

SP

SS

𝑃 𝑋𝑡+1 = 𝑅 𝑋𝑡 = 𝑅)

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑎𝑖𝑟𝑠 𝑤ℎ𝑒𝑟𝑒 𝑋𝑡 , 𝑋𝑡+1 𝑖𝑠 𝑠𝑒𝑒𝑛

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑋𝑡
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Find the Transition Probabilities

Empirical data:
• RRPSSRPSRP

• PPPSPSPSRR

• RPSSPSRPSP

State Transitions 𝑃 𝑋𝑡+1 𝑋𝑡)

RR 2/7

RP 5/7

RS

PR

PP

PS

SR

SP

SS

𝑃 𝑋𝑡+1 = 𝑅 𝑋𝑡 = 𝑃)

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑎𝑖𝑟𝑠 𝑤ℎ𝑒𝑟𝑒 𝑋𝑡 , 𝑋𝑡+1 𝑖𝑠 𝑠𝑒𝑒𝑛

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑋𝑡
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Find the Transition Probabilities

Empirical data:
• RRPSSRPSRP

• PPPSPSPSRR

• RPSSPSRPSP

State Transitions 𝑃 𝑋𝑡+1 𝑋𝑡)

RR 2/7

RP 5/7

RS 0/7

PR

PP

PS

SR

SP

SS

𝑃 𝑋𝑡+1 = 𝑅 𝑋𝑡 = 𝑆)

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑎𝑖𝑟𝑠 𝑤ℎ𝑒𝑟𝑒 𝑋𝑡 , 𝑋𝑡+1 𝑖𝑠 𝑠𝑒𝑒𝑛

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑋𝑡
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Find the Transition Probabilities

Empirical data:
• RRPSSRPSRP

• PPPSPSPSRR

• RPSSPSRPSP

State Transitions 𝑃 𝑋𝑡+1 𝑋𝑡)

RR 2/7 = 0.285

RP 5/7 = 0.714

RS 0/7 = 0

PR 0/10 = 0

PP 2/10 = 0.2

PS 8/10 = 0.8

SR 4/10 = 0.4

SP 4/10 = 0.4

SS 2/10 = 0.2

𝑃 𝑋𝑡+1 𝑋𝑡)

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑎𝑖𝑟𝑠 𝑤ℎ𝑒𝑟𝑒 𝑋𝑡 , 𝑋𝑡+1 𝑖𝑠 𝑠𝑒𝑒𝑛

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑋𝑡
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So now we have…

R starting Probability P starting Probability S starting Probability

2/3 = 0.666 1/3 = 0.333 0/3 = 0

State Transitions 𝑃 𝑋𝑡+1 𝑋𝑡)

RR 2/7 = 0.285

RP 5/7 = 0.714

RS 0/7 = 0

PR 0/10 = 0

PP 2/10 = 0.2

PS 8/10 = 0.8

SR 4/10 = 0.4

SP 4/10 = 0.4

SS 2/10 = 0.2

Transition Probabilities Initial Probabilities

Now we should be able to calculate the 
probability of the sequence of: RPS
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So now we have…

R starting Probability P starting Probability S starting Probability

2/3 = 0.666 1/3 = 0.333 0/3 = 0

State Transitions 𝑃 𝑋𝑡+1 𝑋𝑡)

RR 2/7 = 0.285

RP 5/7 = 0.714

RS 0/7 = 0

PR 0/10 = 0

PP 2/10 = 0.2

PS 8/10 = 0.8

SR 4/10 = 0.4

SP 4/10 = 0.4

SS 2/10 = 0.2

Transition Probabilities Initial Probabilities

calculate the probability of the sequence of: RPS

𝑃 𝑋0 = 𝑅 ∗ 𝑃 𝑋1 = 𝑃 𝑋0 = 𝑅) ∗ 𝑃(𝑋2 = 𝑆 | 𝑋1 = 𝑃)

2

3
∗
5

7
∗
8

10
=

80

210
=

8

21
≈ 0.38
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Looking up each probability is still tedious
• Lucky we can redefine this process as a series of matrix multiplications

• We can also define 1xN (denoted by π) vector to represent our initial state 
probabilities 

• We can define a NxN matrix (denoted by P) which represents the transition 
probabilities

• From there we can use 

𝑃 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒 = 𝜋𝑠𝑡𝑎𝑟𝑡𝑖𝑛𝑔_𝑠𝑡𝑎𝑡𝑒 ∗ 𝑃𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛1 ∗ 𝑃𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛2 …∗ 𝑃𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛_𝑛
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Initial State Probabilities

• We can also define 1xN (denoted by π) vector to represent our 
initial state probabilities 

𝜋 = 𝑝𝕊𝑖𝑛𝑖𝑡𝑎𝑙1 , 𝑝𝕊𝑖𝑛𝑖𝑡𝑎𝑙2 , … 𝑝𝕊𝑖𝑛𝑖𝑡𝑎𝑙𝑛

𝜋 = 0.666, 0.333, 0

𝕊 = {𝑅, 𝑃, 𝑆}
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Transition Matrix

• Let p be an NxN matrix where N is the number of discrete 
states

P=

𝑝11 𝑝12 ⋯ 𝑝1𝑛
𝑝21 𝑝22 … 𝑝2𝑛
⋮

𝑝𝑛1

⋮
𝑝𝑛2

⋱ ⋮
… 𝑝𝑛𝑛

𝑃𝑖𝑗 = 𝑃(𝕊𝑗|𝕊𝑖)

*Assume 𝕊 is ordered

P =
0.285 0.714 0
0 0.2 0.8
0.4 0.4 0.2

R P S

R
P
S

𝕊 = {𝑅, 𝑃, 𝑆}

𝑃𝑖𝑗 = 𝑃(𝕊𝑗|𝕊𝑖)
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Markov Chain

• We can now calculate the probability of a sequence by 
“chaining” together the elements of the matrix

𝑃 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒 = 𝜋𝑠𝑡𝑎𝑟𝑡𝑖𝑛𝑔_𝑠𝑡𝑎𝑡𝑒 ∗ 𝑃𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛1 ∗ 𝑃𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛2 …∗ 𝑃𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛_𝑛
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Let’s check

Previously we calculated the probability of the sequence of: RPS 
using the “old” method. Let’s try the matrix method.

𝑃 𝑋0 = 𝑅 ∗ 𝑃 𝑋0 = 𝑃 𝑋0 = 𝑅) ∗ 𝑃(𝑋1 = 𝑆 | 𝑋1 = 𝑃)

2

3
∗
5

7
∗
8

10
=

8

21
≈ 0.38

𝜋1 ∗ 𝑃12 ∗ 𝑃23
0.666 ∗ 0.714 ∗ 0.8 = 0.38
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Your Turn! Class Challenge

• Assume 𝕊 = {𝑆, 𝑃, 𝑅}

• Assume 𝜋 = 0.8, 0.1, 0.1

• Create the Transition matrix P

• Try to find the probability for:

– SPR
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Your Turn! Class Challenge

• Assume 𝕊 = {𝑆, 𝑃, 𝑅}

• Assume 𝜋 = 0.8, 0.1, 0.1

• Try to find the probability for:

– SPR

https://setosa.io/ev/markov-chains/

𝑃 =
0.5 0.4 0.1
0.4 0.5 0.1
0.2 0.2 0.6

𝜋1 ∗ 𝑝12 ∗ 𝑝23 = 0.8 ∗ 0.4 ∗ 0.1 = 0.032

https://setosa.io/ev/markov-chains/
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So what can we do with our Markov chain

• Calculate the probability of a sequence

– This is useful for comparing on sequence to another

– We could also use this to classify by pick a probability cutoff point

• We can calculate the probability of ending in state S after some  
number of transitions T
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Recommended Next Steps

• Hidden Markov Models (HMM)

– We are making the assumptions that are likely untrue, HMMs help 
address or model hidden states

• Smoothing & Normalization

– Some transitions might never happen in our data set, thus the 
probability will be zero which is probably not what we want 
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THANK YOU

Arthur Putnam

Email: arthurputnam@boisestate.edu


