CS-334
 Algorithms of Machine Learning

Topic: Sequential Modeling

Arthur Putnam

Overview

- Sequential data
- What we can do with sequential modeling
- What techniques are out there
- Introduction into Markov Chains

What is Sequential Data?

What comes to mind?

What is Sequential Data?

Sequential Data is any kind of data where the order "matters"

What makes Sequential Data different from Timeseries data?

Why is it important to know if our data is sequential ?

When should we consider using a sequential approach?

When "critical" information is lost if the order is lost or not represented

Does the order of this data matter? Why or why not?

Hint: this may be trick question

	User Navigation
user	sequence
123	Homepage $>$ Product $1>$ Privacy $>$ contact
456	Product $1>$ Product $2>$ Product $1>$ Return Policy
789	Product 2

Events \& System Logs

Words in a sentence

Key takeaway: just because the data has a sequential element doesn't mean we should model it that way

What we can do with sequential modeling?

- Classification
- Predict the next item in the sequence
- Determine if a given sequence is normal or abnormal
- Use it to create generative AI

Common Ways to Model Sequential Data

- Conditional Random Fields
- Recurrent Neural Networks (RNN)
- Markov Chains
- HMMs

Sequential State Spaces

For the rest of this lecture we are going to assume both time and states are discrete.

Sequential State Spaces

- Define a state space generically as:

$$
\text { State space }=\mathbb{S}=\left\{s_{0}, s_{1} \ldots s_{n}\right\}
$$

- s_{i} represents a discrete state
- State space contains all possible states for seen and unseen sequences

Sequence

- Let's define a sequence as

$$
\begin{gathered}
X=\left(X_{t}\right)=\left(X_{0}, X_{1}, X_{2}, \ldots X_{t}\right) \\
\forall t \in \mathbb{N}, X_{t} \in \mathbb{S}
\end{gathered}
$$

- t represents a discrete timestep
- X_{t} represents the discrete state at time t
- X is an ordered list where each element is in the state space

Sequence Example

- Let $\mathbb{S}=\{$ rock, paper, scissors $\}$

Game 1

$X_{0}=$ rock

Game 2

$X_{1}=$ rock

Game 3

$X_{2}=$ paper $\quad X_{3}=$ scissors
Game 4

$$
X=\left(X_{0}, X_{1}, X_{2}, X_{3}\right)
$$

$$
X=(\text { rock }, \text { rock }, \text { paper }, \text { scissors })
$$

Sequence Example 2

- Let $\mathbb{S}=\{$ rock, paper, scissors $\}$

Game 1

Game 2

$$
X_{0}=\text { rock } \quad X_{1}=\text { rock }
$$

$$
X=\left(X_{0}, X_{1}\right)
$$

$$
X=(\text { rock }, \text { rock })
$$

Let's assume we are trying to predict the next move our opponent is going to make in a game of Rock, Paper, Scissors

Game 1

$$
X_{0}=\text { rock }
$$

Game 2

$X_{1}=\operatorname{rock}$

Game 3

Modeling Sequential Data

- One way we might model sequential data is via a probabilistic approach where we predict future states based on the present and the past

$$
P(f u t u r e \mid \text { present, past })
$$

Example Assumptions

- Let's assume we already know the probability distribution

$$
P(f u t u r e \mid \text { present, past })
$$

- This probability distribution is based on our opponent's previous moves

P(future | present, past)

Game 1

$$
X_{0}=\text { rock }
$$

Game 2

$X_{1}=$ rock

Game 3

$X_{2}=p a p e r$

Game 4

$X_{3}=$ scissors
$P\left(\right.$ rock $\mid X_{2}=$ paper,$X_{1}=$ rock, $X_{0}=$ rock $)$
$P\left(\right.$ paper $\mid X_{2}=$ paper,$X_{1}=$ rock, $X_{0}=$ rock $)$
$P\left(\right.$ scissors $\mid X_{2}=$ paper,$X_{1}=$ rock, $X_{0}=$ rock $)$

- Let's assume

$$
\begin{aligned}
& P\left(\text { rock } \mid X_{2}=\text { paper }, X_{1}=\text { rock }, X_{0}=\text { rock }\right)=0.3 \\
& P\left(\text { paper } \mid X_{2}=\text { paper }, X_{1}=\text { rock, } X_{0}=\text { rock }\right)=0.3 \\
& P\left(\text { scissors } \mid X_{2}=\text { paper }, X_{1}=\text { rock, } X_{0}=\text { rock }\right)=0.4
\end{aligned}
$$

- What move should we go with?

$$
P\left(\text { scissors } \mid X_{2}=\text { paper }, X_{1}=\text { rock }, X_{0}=\text { rock }\right)=0.4
$$

Game 4

Opponent
Our Prediction

Our Move

First Approach Assessment

- What are some problems with this approach?

$$
P\left(\text { future } \mid X_{t}, X_{t-1}, X_{t-2}, \ldots X_{0}\right)
$$

- How would we calculate the probability distribution, if it wasn't given to us?

$$
\begin{aligned}
& P\left(\text { rock } \mid X_{2}=\text { paper }, X_{1}=\text { rock, } X_{0}=\text { rock }\right)=0.3 \\
& P\left(\text { paper } \mid X_{2}=\text { paper }, X_{1}=\text { rock }, X_{0}=\text { rock }\right)=0.3 \\
& P\left(\text { scissors } \mid X_{2}=\text { paper }, X_{1}=\text { rock }, X_{0}=\text { rock }\right)=0.4
\end{aligned}
$$

Markov Property

- Markov Property states that the conditional probability distribution of future states of the process depends only on the present state, not on the sequence of events that preceded it.
- Markov assumption is used to describe a model where the Markov property is assumed to hold

Using the Markov Property

$$
\begin{array}{ll}
P(\text { future } \mid \text { present, past }) \\
P\left(\text { future } \mid X_{t}, X_{t-1}, X_{t-2}, \ldots X_{0}\right)
\end{array} \longmapsto \begin{aligned}
& P(\text { future } \mid \text { present }) \\
& P\left(\text { future } \mid X_{t}\right)
\end{aligned}
$$

This simplifies the probability function and is more robust at handling differently ordered sequences

Markov Chain

- A Markov chain is a stochastic model describing a sequence of possible events in which the probability of each event depends only on the state attained in the previous event.
*Conceptual Model

*We will define this model more formally later

Visualization

https://setosa.io/ev/markov-chains/

Markov Chain

- Often considered to be "memory-less" thanks to the Markov Property
- Markov Model can take a sequence as input and produce
- the probability of that sequence
- or the probability of the next states in the sequence
- Is trained from empirical data
- (multiset of sequences)
- Pros: easy to train, simple to understand

Let's Build a Markov Chain from Scratch

- We need to:
- Define the state space
- Find the initial probabilities
- Find the transition probabilities
- Data Set
- Sequences:
- RRPSSRPSRP
- PPPSPSPSRR
- RPSSPSRPSP
$-\mathrm{R}=$ Rock, $\mathrm{P}=$ Paper, $\mathrm{S}=$ Scissors

Define the state space

Empirical data:

- RRPSSRPSRP
- PPPSPSPSRR
- RPSSPSRPSP

$$
\mathbb{S}=\{R, P, S\}
$$

Find the Initial Probabilities

Empirical data:

- RRPSSRPSRP
- PPPSPSPSRR
- RPSSPSRPSP

R starting Probability	P starting Probability	S starting Probability
$2 / 3=0.666$	$1 / 3=0.333$	$0 / 3=0$

Find the Transition Probabilities

Empirical data:

- RRPSSRPSRP
- PPPSPSPSRR
- RPSSPSRPSP

$$
P\left(X_{t+1}=R \mid X_{t}=R\right)
$$

Number of pairs where X_{t}, X_{t+1} is seen
Number of X_{t}

State Transitions	$P\left(X_{t+1} \mid X_{t}\right)$
RR	$2 / 7$
RP	
RS	
PR	
PP	
PS	
SR	
SP	
SS	

Find the Transition Probabilities

Empirical data:

- RRPSSRPSRP
- PPPSPSPSRR
- RPSSPSRPSP

$$
P\left(X_{t+1}=R \mid X_{t}=P\right)
$$

Number of pairs where X_{t}, X_{t+1} is seen

State Transitions	$P\left(X_{t+1} \mid X_{t}\right)$
RR	$2 / 7$
RP	$5 / 7$
RS	
PR	
PP	
PS	
SR	
SP	
SS	

Find the Transition Probabilities

Empirical data:

- RRPSSRPSRP
- PPPSPSPSRR
- RPSSPSRPSP

$$
P\left(X_{t+1}=R \mid X_{t}=S\right)
$$

Number of pairs where X_{t}, X_{t+1} is seen

State Transitions	$P\left(X_{t+1} \mid X_{t}\right)$
RR	$2 / 7$
RP	$5 / 7$
RS	$0 / 7$
PR	
PP	
PS	
SR	
SP	
SS	

Find the Transition Probabilities

Empirical data:

- RRPSSRPSRP
- PPPSPSPSRR
- RPSSPSRPSP

$$
P\left(X_{t+1} \mid X_{t}\right)
$$

Number of pairs where X_{t}, X_{t+1} is seen Number of X_{t}

State Transitions	$P\left(X_{t+1} \mid X_{t}\right)$
RR	$2 / 7=0.285$
RP	$5 / 7=0.714$
RS	$0 / 7=0$
PR	$0 / 10=0$
PP	$2 / 10=0.2$
PS	$8 / 10=0.8$
SR	$4 / 10=0.4$
SP	$4 / 10=0.4$
SS	$2 / 10=0.2$

So now we have...

Initial Probabilities

R starting Probability	P starting Probability	S starting Probability
$2 / 3=0.666$	$1 / 3=0.333$	$0 / 3=0$

Now we should be able to calculate the probability of the sequence of: RPS

Transition Probabilities

State Transitions	$P\left(X_{t+1} \mid X_{t}\right)$
RR	$2 / 7=0.285$
RP	$5 / 7=0.714$
RS	$0 / 7=0$
PR	$0 / 10=0$
PP	$2 / 10=0.2$
PS	$8 / 10=0.8$
SR	$4 / 10=0.4$
SP	$4 / 10=0.4$
SS	$2 / 10=0.2$

So now we have...

Initial Probabilities

R starting Probability	P starting Probability	S starting Probability
$2 / 3=0.666$	$1 / 3=0.333$	$0 / 3=0$

calculate the probability of the sequence of: RPS

$$
\begin{gathered}
P\left(X_{0}=R\right) * P\left(X_{1}=P \mid X_{0}=R\right) * P\left(X_{2}=S \mid X_{1}=P\right) \\
\frac{2}{3} * \frac{5}{7} * \frac{8}{10}=\frac{80}{210}=\frac{8}{21} \approx 0.38
\end{gathered}
$$

Transition Probabilities

State Transitions	$P\left(X_{t+1} \mid X_{t}\right)$
RR	$2 / 7=0.285$
RP	$5 / 7=0.714$
RS	$0 / 7=0$
PR	$0 / 10=0$
PP	$2 / 10=0.2$
PS	$8 / 10=0.8$
SR	$4 / 10=0.4$
SP	$4 / 10=0.4$
SS	$2 / 10=0.2$

Looking up each probability is still tedious

- Lucky we can redefine this process as a series of matrix multiplications
- We can also define $1 \times N$ (denoted by π) vector to represent our initial state probabilities
- We can define a NxN matrix (denoted by P) which represents the transition probabilities
- From there we can use

$$
P(\text { sequence })=\pi_{\text {starting_state }} * P_{\text {transition }_{1}} * P_{\text {transition }_{2}} \ldots * P_{\text {transition_n }}
$$

Initial State Probabilities

- We can also define $1 x N$ (denoted by π) vector to represent our initial state probabilities

$$
\pi=\left[p_{\text {sinital }_{1}}, p_{S_{\text {inital }_{2}}}, \ldots p_{\text {Sinitaln }_{n}}\right]
$$

R starting Probability	P starting Probability	S starting Probability
$2 / 3=0.666$	$1 / 3=0.333$	$0 / 3=0$

$$
\begin{gathered}
\pi=[0.666,0.333,0] \\
\mathbb{S}=\{R, P, S\}
\end{gathered}
$$

Transition Matrix

- Let p be an NxN matrix where N is the number of discrete states

$$
\begin{gathered}
\mathrm{P}=\left[\begin{array}{cccc}
p_{11} & p_{12} & \cdots & p_{1 n} \\
p_{21} & p_{22} & \cdots & p_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
p_{n 1} & p_{n 2} & \cdots & p_{n n}
\end{array}\right] \\
P_{i j}=P\left(\mathbb{S}_{j} \mid \mathbb{S}_{i}\right) \\
\\
\text { *Assume } \mathbb{S} \text { is ordered }
\end{gathered}
$$

$$
\left.\mathrm{P}=\begin{array}{c}
\mathrm{R} \\
\mathrm{P} \\
\mathrm{~S}
\end{array} \begin{array}{ccc}
\mathrm{R} & \mathrm{P} & \mathrm{~S} \\
0.285 & 0.714 & 0 \\
0 & 0.2 & 0.8 \\
0.4 & 0.4 & 0.2
\end{array}\right]
$$

$$
\begin{aligned}
P_{i j} & =P\left(\mathbb{S}_{j} \mid \mathbb{S}_{i}\right) \\
\mathbb{S} & =\{R, P, S\}
\end{aligned}
$$

Transition Probabilities

State Transitions	$P\left(X_{t+1} \mid X_{t}\right)$
RR	$2 / 7=0.285$
RP	$5 / 7=0.714$
RS	$0 / 7=0$
PR	$0 / 10=0$
PP	$2 / 10=0.2$
PS	$8 / 10=0.8$
SR	$4 / 10=0.4$
SP	$4 / 10=0.4$
SS	$2 / 10=0.2$

Markov Chain

- We can now calculate the probability of a sequence by "chaining" together the elements of the matrix

$$
P(\text { sequence })=\pi_{\text {starting_state }} * P_{\text {transition }_{1}} * P_{\text {transition }_{2} \ldots} \ldots P_{\text {transition_ } n}
$$

Let's check

Previously we calculated the probability of the sequence of: RPS

 using the "old" method. Let's try the matrix method.$$
\begin{array}{rl}
P\left(X_{0}=R\right) * P\left(X_{0}=P \mid X_{0}=R\right) * P\left(X_{1}=S \mid X_{1}=P\right) & \pi=[0.666,0.333,0] \\
\frac{2}{3} * \frac{5}{7} * \frac{8}{10}=\frac{8}{21} \approx 0.38 & \mathrm{R} \\
& \mathrm{P} \\
\mathrm{P}=\mathrm{P}\left[\begin{array}{ccc}
0.285 & 0.714 & 0 \\
0 & 0.2 & 0.8 \\
0.4 & 0.4 & 0.2
\end{array}\right] \\
& \pi_{1} * P_{12} * P_{23} \\
& 0.666 * 0.714 * 0.8=0.38
\end{array}
$$

Your Turn! Class Challenge

- Assume $\mathbb{S}=\{S, P, R\}$
- Assume $\pi=[0.8,0.1,0.1]$
- Create the Transition matrix P
- Try to find the probability for:
- SPR

Your Turn! Class Challenge

- Assume $\mathbb{S}=\{S, P, R\}$
- Assume $\pi=[0.8,0.1,0.1]$
- Try to find the probability for:
- SPR

$$
P=\left[\begin{array}{lll}
0.5 & 0.4 & 0.1 \\
0.4 & 0.5 & 0.1 \\
0.2 & 0.2 & 0.6
\end{array}\right]
$$

$$
\pi_{1} * p_{12} * p_{23}=0.8 * 0.4 * 0.1=0.032
$$

So what can we do with our Markov chain

- Calculate the probability of a sequence
- This is useful for comparing on sequence to another
- We could also use this to classify by pick a probability cutoff point
- We can calculate the probability of ending in state S after some number of transitions T

Recommended Next Steps

- Hidden Markov Models (HMM)
- We are making the assumptions that are likely untrue, HMMs help address or model hidden states
- Smoothing \& Normalization
- Some transitions might never happen in our data set, thus the probability will be zero which is probably not what we want

Arthur Putnam
Email: arthurputnam@boisestate.edu
THANK YOU

ISHOUNDO SOCIETIMO WHW MERKO CHIINS

