
Reinforcement 
Learning

the environment is your guide



Machine Learning

● Supervised learning: y = f(x) when you have both x and y
● Self-supervised learning: y = f(x) when y is somehow derived from x
● Unsupervised learning: y = f(x) when you only have x
● Reinforcement learning: y = f(x) you can have both x and y, or you can have 

neither, but either way you have a decision to make. 
○ Used in gaming, robotics, healthcare, finance, dialogue systems, traffic control, 

recommendation engines, self-driving cars, adaptive systems, ….



RL: Intuition

http://incompleteideas.net/book/bookdraft2017nov5.pdf



Example (Lison 2014, Chapter 3)



Example, now time series



Example, now with a decision to make

Chance nodes are associated with 
conditional probability distributions 
that define the relative probabilities 
of the node values given the values 
in the parent nodes.

Decision nodes correspond to 
variables that are under the control 
of the system. The values of these 
nodes reflect an active choice made 
by the system to execute particular 
actions.

Utility nodes express the utilities 
(from the system’s point of view) 
associated with particular situations 
expressed in the node parents. 
Typically, these parents combine 
both chance and decision variables.

Does this remind you of anything?



Learning: estimating the probabilities

● Treat each factor independently and estimate each one individually
● Can use Maximum likelihood estimation (MLE)

○ What are some possible issues with this?
○ Example: You have only observed once that Weather=cold, then what will you model predict?

● Can use Bayesian learning
○ What is needed to make this happen? 
○ Example: You don’t have any data, but you set a prior P(x) to something “sensible” like 

cold=0.4, hot=0.4, and warm=0.2
○ Then use new observations to update priors, likelihoods, and posteriors



Learning: estimating the probabilities

● Discrete/categorical data: just count things
● Continuous data: which distributions do I use for likelihoods P(x|y), priors 

P(y), and posteriors P(y|x)?
○ Rule of thumb: try to use distributions from the same family (conjugate priors)
○ Normal distribution: just need means and standard deviations, but estimation using 

Bayesian learning usually means you start with a value for each then update as data 
becomes available

○ Dirichlet (to help with categorical data): a continuous, multivariate distribution, need to 
estimate alpha parameters

● Reaching all of the states: explore, exploit

http://blog.bogatron.net/blog/2014/02/02/visualizing-dirichlet-distributions/


Markov Decision Processes (MDP)



Markov Decision Processes (MDP)



Temporal-difference: Q-Learning 

state action

update Q for k+1 from what 
was known before in k

reward

estimated Qk for 
new state

learning 
rate

Goal: find the best function 
Q(s,a) that estimates the 
MDP (e.g., think of chess)

discount factor: worth of 
future rewards vs. present 
rewards



Partially Observable MDP (POMDP)

O: the set of possible 
observations



How to make a RL agent?

● Need a way to represent states (initial state values, too)
● Need a way to model the factored joint distribution

○ Each factor needs its own prior, likelihood, posterior distribution

● Need a way to map from states to actions
○ And rewards!

● Easy to author different things (e.g., chess, dialogue)
● Works in live settings as well as from data or simulation
● Answer: opendial! 

https://github.com/KAIST-AILab/PyOpenDial

