The Mathematics of Dimensionality Reduction

Divy Murli
Kount, Inc

(1) Introduction

- Overview
- Motivation
(2) Singular Value Decomposition
- Mathematics
- Application: Image compression
(3) Principal Component Analysis
- Some statistics
- Application: clustering
(4) Linear Discriminant Analysis
- Setting up Fisher's problem
- Application: LDA vs PCA head-to-head
(5) Concluding comments

Background

- BS, PhD in theoretical physics (dissertation in string theory)
- Data science/ML practictioner, started to transition mid-way through grad school via coursework/projects
- Unlike many other subjects, data science lies at the confluence of many disciplines, including but not limited to: computer science, statistics, applied maths, EE/signal processing, ...

Convention

Why dimensionality reduction?

- Method of easily exploring high-dimensional datasets
- Distill a dataset to its essence, in particular by choosing salient or 'eigen' features (more on this later)
- Project a high-dimensional dataset down to low-dimensions for easy interpretability and visualisation
- Uncover the structure of a dataset in a (perhaps) unsupervised manner, potentially for classification as well
- Uncover features that account for the most variance in the data

Methods of Dimensionality Reduction/Feature Reduction

- Remove features by hand in an ad-hoc manner, and check effect of performance on a a model of interest (e.g. neural network, logistic regression, random forest, etc). Remove features that don't affect model performance
- Feed through a random forest, select important features through e.g. Gini purity/information gain

Methods of Dimensionality Reduction/Feature Reduction

- Remove features by hand in an ad-hoc manner, and check effect of performance on a a model of interest (e.g. neural network, logistic regression, random forest, etc). Remove features that don't affect model performance
- Feed through a random forest, select important features through e.g. Gini purity/information gain
- Select salient 'features' as directions of maximal variance: Principal Component Analysis (unsupervised)
- Select salient 'features' that maximally separate classes: Linear Discriminant Analysis (supervised)

Let's look at an example of correlated data:

As you'd intuitively expect, there's a strong positive correlation between these two variables, and and you can probably just draw on the most important features:

But, what if our dataset has 100 , or maybe even 1,000 features? There's no way we can possibly visualise that. And we definitely can't just draw arrows like we did above.

But, what if our dataset has 100 , or maybe even 1,000 features? There's no way we can possibly visualise that. And we definitely can't just draw arrows like we did above.

Enter PCA.

Before we get there though ...

Singular Value Decomposition (SVD)

$$
X=U \Sigma V^{T}
$$

Introducing SVD

(Most) square matrices can be eigendecomposed, namely given a square matrix $A \in \mathbb{R}^{n \times n}$, we can write it as

$$
A=P D P^{-1}
$$

where $P=\left[\vec{v}_{1}|\ldots| \vec{v}_{n}\right]$ and $D=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{n}\right)$.

Introducing SVD

(Most) square matrices can be eigendecomposed, namely given a square matrix $A \in \mathbb{R}^{n \times n}$, we can write it as

$$
A=P D P^{-1}
$$

where $P=\left[\vec{v}_{1}|\ldots| \vec{v}_{n}\right]$ and $D=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{n}\right)$.
But most matrices aren't square. And, practically all data matrices aren't square.

Introducing SVD

To generalise, it turns out that given any rectangular matrix $X \in \mathbb{R}^{m \times n}$,

$$
X=U \Sigma V^{T}
$$

where U and V are respectively $m \times m$ and $n \times n$ orthogonal matrices whose columns are the left and right singular vectors of X. These are generalisations of the eigenvectors of a square matrix.

What is Σ ?

The analogy of the eigenvalues of a square matrix, Σ is a rectangular $m \times n$ matrix whose diagonal entries are the singular values. If $m>n$ (as is the case in most datasets; we typically have more samples than features), it can be written as

$$
\Sigma=\left[\begin{array}{ccc}
\sigma_{1} & & \\
& \ddots & \\
& & \sigma_{n} \\
& & \\
& &
\end{array}\right], \quad \sigma_{1} \geq \ldots \geq \sigma_{n}
$$

What is Σ ?

The analogy of the eigenvalues of a square matrix, Σ is a rectangular $m \times n$ matrix whose diagonal entries are the singular values. If $m>n$ (as is the case in most datasets; we typically have more samples than features), it can be written as

$$
\Sigma=\left[\begin{array}{lll}
\sigma_{1} & & \\
& \ddots & \\
& & \sigma_{n} \\
& &
\end{array}\right], \sigma_{1} \geq \ldots \geq \sigma_{n}
$$

If X has column rank $r<n$, then only the first r singular values of X will be nonzero.

What is Σ ?

The analogy of the eigenvalues of a square matrix, Σ is a rectangular $m \times n$ matrix whose diagonal entries are the singular values. If $m>n$ (as is the case in most datasets; we typically have more samples than features), it can be written as

$$
\Sigma=\left[\begin{array}{ccc}
\sigma_{1} & & \\
& \ddots & \\
& & \sigma_{n} \\
& & \\
& &
\end{array}\right], \quad \sigma_{1} \geq \ldots \geq \sigma_{n}
$$

If X has column rank $r<n$, then only the first r singular values of X will be nonzero. The same is true for eigendecomposition of a square matrix.

Computing Singular Values

Let u_{i}, v_{i} respectively be the rows and columns of U and V. The SVD can equivalently be written as

$$
X=u_{1} \sigma_{1} v_{1}^{T}+\ldots+u_{r} \sigma_{r} v_{r}^{T}
$$

Computing Singular Values

Let u_{i}, v_{i} respectively be the rows and columns of U and V. The SVD can equivalently be written as

$$
X=u_{1} \sigma_{1} v_{1}^{T}+\ldots+u_{r} \sigma_{r} v_{r}^{T}
$$

$$
\begin{aligned}
& X X^{T}=U \Sigma \Sigma^{T} U^{T} \in \mathbb{R}^{m \times m} \\
& X^{T} X=V \Sigma^{T} \Sigma V^{T} \in \mathbb{R}^{n \times n}
\end{aligned}
$$

Computing Singular Values

Let u_{i}, v_{i} respectively be the rows and columns of U and V. The SVD can equivalently be written as

$$
X=u_{1} \sigma_{1} v_{1}^{T}+\ldots+u_{r} \sigma_{r} v_{r}^{T}
$$

$$
\begin{aligned}
& X X^{T}=U \Sigma \Sigma^{T} U^{T} \in \mathbb{R}^{m \times m} \\
& X^{T} X=V \Sigma^{T} \Sigma V^{T} \in \mathbb{R}^{n \times n}
\end{aligned}
$$

From above, columns of U are the eigenvectors of $X X^{T}$ and columns of V are eigenvectors of $X^{\top} X . \sigma_{1}^{2}, \ldots, \sigma_{n}^{2}$ are eigenvalues of both $X^{T} X$ and $X X^{T}$. Assuming $m>n, X X^{T}$ will have $m-n$ additional zero eigenvalues.

SVD for approximation

- Often, storing a large matrix can be infeasible. How do we approximate it?

SVD for approximation

- Often, storing a large matrix can be infeasible. How do we approximate it?
- More specifically, how do we give a rank k approximation?

SVD for approximation

- Often, storing a large matrix can be infeasible. How do we approximate it?
- More specifically, how do we give a rank k approximation?
- Even more specifically, given a matrix $X \in \mathbb{R}^{m \times n}$ with rank $r \leq n$, what's the 'best' rank k matrix B that approximates X for some some $k<r$?

SVD for approximation

To answer the question of 'best', we need a notion of distance. That is, given B, we want to answer the optimisation question

$$
\min _{B}\|X-B\|
$$

where the minimum is taken over all rank k matrices B.

SVD for approximation

To answer the question of 'best', we need a notion of distance. That is, given B, we want to answer the optimisation question

$$
\min _{B}\|X-B\|
$$

where the minimum is taken over all rank k matrices B. Here are a couple of common choices of 'distance' one can use:

$$
\begin{aligned}
\|B\|_{2} & =\max _{x \in \mathbb{R}^{n}} \frac{\|B x\|}{\|x\|}=\sigma_{1} \quad(\text { spectral norm }) \\
\|B\|_{F} & =\sqrt{\sigma_{1}^{2}+\ldots+\sigma_{k}^{2}} \quad(\text { Frobenius norm })
\end{aligned}
$$

Eckart-Young-Mirsky

Eckart-Young-Mirsky give a solution to the optimisation problem on the previous slide:

$$
\|X-B\| \geq\left\|X-A_{k}\right\|
$$

where

$$
A_{k}=\sigma_{1} u_{1} v_{1}^{T}+\ldots+\sigma_{k} u_{k} v_{k}^{T}
$$

is the optimal solution.

Image compression

- Given a generic (black and white) image represented as an $m \times n$ matrix, one would need to store $m n$ values.
- However, by approximating this image with a rank k matrix, one would need to store $k(m+n)$ values.

Image compression

- Given a generic (black and white) image represented as an $m \times n$ matrix, one would need to store $m n$ values.
- However, by approximating this image with a rank k matrix, one would need to store $k(m+n)$ values.

Define the compression ratio to be

$$
\frac{k(m+n)}{m n}
$$

Reconstructing an image with SVD

Reconstructing an image with SVD

Compression ratio: 0.01

Compression ratio: 0.05

Compression ratio: 0.2

Scree plot

Scree plot

- Considering the image like a 'dataset', this suggests that we can 'reconstruct' the image from building blocks of rank one matrices.
- This is exactly how PCA works: capture the salient information in a dataset by projecting it onto the most important components.
- Said differently, PCA is a statistical interpretation of the SVD. We'll see this below.

Introducing PCA

Given tabular data

Sample mean and covariance

Given data samples $x_{1 k}, \ldots, x_{m k}$ (rows of $X_{0}, 1 \leq k \leq n$ indexing features), we can define the sample mean as

$$
\mu_{k}=\frac{1}{m} \sum_{i=1}^{m} x_{i k}
$$

Given a set of observations $\mathbf{x}^{(1)}, \ldots, \mathbf{x}^{(m)}$ (rows of X_{0}) the sample covariance is

$$
Q_{a b}=\frac{1}{m-1} \sum_{k=1}^{m}\left(x_{k a}-\mu_{a}\right)\left(x_{k b}-\mu_{b}\right)
$$

Sample mean and covariance

Given data samples $x_{1 k}, \ldots, x_{m k}$ (rows of $X_{0}, 1 \leq k \leq n$ indexing features), we can define the sample mean as

$$
\mu_{k}=\frac{1}{m} \sum_{i=1}^{m} x_{i k}
$$

Given a set of observations $\mathbf{x}^{(1)}, \ldots, \mathbf{x}^{(m)}$ (rows of X_{0}) the sample covariance is

$$
Q_{a b}=\frac{1}{m-1} \sum_{k=1}^{m}\left(x_{k a}-\mu_{a}\right)\left(x_{k b}-\mu_{b}\right)
$$

with $1 \leq a, b \leq n .(\operatorname{Recall} \operatorname{Cov}(X, Y)=\mathbb{E}[(X-\mathbb{E}(X))(Y-\mathbb{E}(Y))]$.

PCA as a statistical interpretation of SVD

Define X to be the mean-subtracted matrix. Then, the covariance matrix can be written as

$$
Q \propto X^{T} X
$$

PCA as a statistical interpretation of SVD

Define X to be the mean-subtracted matrix. Then, the covariance matrix can be written as

$$
Q \propto X^{T} X
$$

But this is what we saw earlier! (remember the blue equation). In fact, in

$$
X^{T} X=V \Sigma^{T} \Sigma V^{T}
$$

$\Sigma^{T} \Sigma=\operatorname{diag}\left(\sigma_{1}, \ldots, \sigma_{n}\right)$ and V is diagonalises $X^{T} X$.

PCA as a statistical interpretation of SVD

Define X to be the mean-subtracted matrix. Then, the covariance matrix can be written as

$$
Q \propto X^{T} X
$$

But this is what we saw earlier! (remember the blue equation). In fact, in

$$
X^{T} X=V \Sigma^{T} \Sigma V^{T}
$$

$\Sigma^{T} \Sigma=\operatorname{diag}\left(\sigma_{1}, \ldots, \sigma_{n}\right)$ and V is diagonalises $X^{T} X$. The right singular vectors of X (or the eigenvectors of $X^{\top} X$) are the directions of variance of the data, the top k directions of largest variance correspond to the top k eigenvectors (arranged by eigenvalue).

PCA as a statistical interpretation of SVD

Define X to be the mean-subtracted matrix. Then, the covariance matrix can be written as

$$
Q \propto X^{T} X
$$

But this is what we saw earlier! (remember the blue equation). In fact, in

$$
X^{T} X=V \Sigma^{T} \Sigma V^{T}
$$

$\Sigma^{T} \Sigma=\operatorname{diag}\left(\sigma_{1}, \ldots, \sigma_{n}\right)$ and V is diagonalises $X^{T} X$. The right singular vectors of X (or the eigenvectors of $X^{\top} X$) are the directions of variance of the data, the top k directions of largest variance correspond to the top k eigenvectors (arranged by eigenvalue). The singular values of X are the variances themselves.

Example with iris data

```
iris = datasets.load_iris()
X = iris.data
y = iris.target
```

```
data = pd.DataFrame(iris.data, columns=iris.feature_names)
print(len(data))
data.head()
```

150

	sepal length (cm)	sepal width (cm)	petal length (cm)	petal width (cm)
$\mathbf{0}$	5.1	3.5	1.4	0.2
$\mathbf{1}$	4.9	3.0	1.4	0.2
$\mathbf{2}$	4.7	3.2	1.3	0.2
$\mathbf{3}$	4.6	3.1	1.5	0.2
$\mathbf{4}$	5.0	3.6	1.4	0.2

Example with iris data

```
X_recentered = X - feature_means
```

*Compute SVD
$\mathrm{U}, \mathrm{S}, \mathrm{Vt}=\pi \mathrm{m}$. linalg. $\mathrm{svd}(\mathrm{X}$ _recentered)
print (U.shape)
print(S.shape)
print(Vt.shape)
(150, 150)
(4,)
$(4,4)$
$\mathrm{V}=\mathrm{np}$, transpose (Vt)
PCI $=n p \cdot \operatorname{dot}\left(X_{_}\right.$recentered, $\left.V[:, 0]\right)$
PC2 $=n \mathrm{np}$.dot(X_recentered, $\mathrm{V}[:, 1]$)
fig $=$ plt.figure(figsize=(6,6), facecolor="white")
ax=fig.add_subplot(111)
ax.scatter(PC1, PC2, c=y, cmap="rainbow", alpha=0.9, edgecolor="b")
ax.set_xlabel("PC1")
ax.set_ylabel("PC2")
Text ($0,0.5$, 'PC2')

Linear discriminant analysis

- PCA is an excellent exploratory tool to understand the structure of a dataset, in an unsupervised manner

Linear discriminant analysis

- PCA is an excellent exploratory tool to understand the structure of a dataset, in an unsupervised manner
- Suppose we also had access to class labels - how can we utilise them in dimensionality reduction?
- Linear discriminant analysis (LDA) provides a way to reduce dimensions whilst maximising the separation between classes
- LDA is used both for classification as well as dimensionality reduction

We'll be focussing on Fisher's setup for LDA.

Fisher's problem

Suppose we have two classes, with data points $x_{1}, \ldots, x_{n_{1}} \in \mathbb{R}^{n}$ and $y_{1}, \ldots, y_{n_{2}} \in \mathbb{R}^{n}$. Define The respective means are

$$
\mu_{1}=\frac{1}{n_{1}} \sum_{j=1}^{n_{1}} x_{i}
$$

respectively for μ_{2}.

Fisher's problem

Suppose we have two classes, with data points $x_{1}, \ldots, x_{n_{1}} \in \mathbb{R}^{n}$ and $y_{1}, \ldots, y_{n_{2}} \in \mathbb{R}^{n}$. Define The respective means are

$$
\mu_{1}=\frac{1}{n_{1}} \sum_{j=1}^{n_{1}} x_{i}
$$

respectively for μ_{2}. Let $v \in \mathbb{R}^{n}$ be the vector that optimally separates the classes upon projection. Define the projected means to be

$$
\tilde{\mu}_{1}=\frac{1}{n_{1}} \sum_{j=1}^{n_{1}} v^{\top} x_{i}
$$

respectively for $\tilde{\mu}_{2}$.

Fisher's problem

Define the within class scatter matrices to be

$$
\begin{aligned}
\tilde{s}_{1}^{2} & =\sum_{j=1}^{n_{1}}\left(v^{T} x_{j}-\tilde{\mu}_{1}\right)^{2} \\
& =v^{T} \underbrace{\left(\sum_{j=1}^{n_{1}}\left(x_{j}-\mu_{1}\right)\left(x_{j}-\mu_{1}\right)^{T}\right)}_{s_{1}} v
\end{aligned}
$$

and respectively \tilde{s}_{2}^{2}.

Fisher's problem

Define the within class scatter matrices to be

$$
\begin{aligned}
\tilde{s}_{1}^{2} & =\sum_{j=1}^{n_{1}}\left(v^{T} x_{j}-\tilde{\mu}_{1}\right)^{2} \\
& =v^{T} \underbrace{\left(\sum_{j=1}^{n_{1}}\left(x_{j}-\mu_{1}\right)\left(x_{j}-\mu_{1}\right)^{T}\right)}_{s_{1}} v
\end{aligned}
$$

and respectively \tilde{s}_{2}^{2}. Seek to maximise

$$
R(v) \equiv \frac{\left(\tilde{\mu}_{1}-\tilde{\mu}_{2}\right)^{2}}{\tilde{s}_{1}^{2}+\tilde{s}_{2}^{2}}
$$

wrt v.

Fisher's problem

Define the within class scatter matrices to be

$$
\begin{aligned}
\tilde{s}_{1}^{2} & =\sum_{j=1}^{n_{1}}\left(v^{T} x_{j}-\tilde{\mu}_{1}\right)^{2} \\
& =v^{T} \underbrace{\left(\sum_{j=1}^{n_{1}}\left(x_{j}-\mu_{1}\right)\left(x_{j}-\mu_{1}\right)^{T}\right)}_{s_{1}} v
\end{aligned}
$$

and respectively \tilde{s}_{2}^{2}. Seek to maximise

$$
R(v) \equiv \frac{\left(\tilde{\mu}_{1}-\tilde{\mu}_{2}\right)^{2}}{\tilde{s}_{1}^{2}+\tilde{s}_{2}^{2}}
$$

wrt v. that is, maximise the distance the means of classes are away from one another relative to the spread of each class.

Fisher's problem

Write the ratio as

$$
R(v)=\frac{v^{\top} S_{b} v}{v^{\top} S_{w} v}
$$

where

$$
\begin{aligned}
& S_{b}=\left(\mu_{1}-\mu_{2}\right)\left(\mu_{1}-\mu_{2}\right)^{T} \\
& S_{w}=s_{1}+s_{2}
\end{aligned}
$$

are respectively the between and within class scatter matrices.

Fisher's problem

Write the ratio as

$$
R(v)=\frac{v^{\top} S_{b} v}{v^{\top} S_{w} v}
$$

where

$$
\begin{aligned}
& S_{b}=\left(\mu_{1}-\mu_{2}\right)\left(\mu_{1}-\mu_{2}\right)^{T} \\
& S_{w}=s_{1}+s_{2}
\end{aligned}
$$

are respectively the between and within class scatter matrices. Ratio is maximised at $v \propto S_{w}^{-1}\left(\mu_{1}-\mu_{2}\right)$ (cf generalised Rayleigh quotient).

Multiclass case

We must maximise the same ratio (for k classes)

$$
R(v)=\frac{v^{\top} S_{b} v}{v^{\top} S_{w} v}
$$

where

$$
\begin{aligned}
& S_{b}=n_{1}\left(\mu_{1}-\mu\right)\left(\mu_{1}-\mu\right)^{T}+\ldots+n_{k}\left(\mu_{k}-\mu\right)\left(\mu_{k}-\mu\right)^{T} \\
& S_{w}=s_{1}+s_{2}+\ldots+s_{k}
\end{aligned}
$$

μ_{i}, n_{i}, μ are respectively class means, class numbers and total mean.

Multiclass case

We must maximise the same ratio (for k classes)

$$
R(v)=\frac{v^{\top} S_{b} v}{v^{\top} S_{w} v}
$$

where

$$
\begin{aligned}
& S_{b}=n_{1}\left(\mu_{1}-\mu\right)\left(\mu_{1}-\mu\right)^{T}+\ldots+n_{k}\left(\mu_{k}-\mu\right)\left(\mu_{k}-\mu\right)^{T} \\
& S_{w}=s_{1}+s_{2}+\ldots+s_{k}
\end{aligned}
$$

μ_{i}, n_{i}, μ are respectively class means, class numbers and total mean.
(Generally, for k classes we must find the top $k-1$ generalised eigenvectors of $S_{b} v=\lambda S_{w} v$. In fact, the rank of S_{b} turns out to be $k-1$, generalising from the one-class case.)

PCA vs LDA

```wine = datasets.load_wine() X = wine.data y = wine.target```													
```data = pd.DataFrame(wine.data, columns=wine.feature_names) data.head()```													
	alcohol	malic_acid	ash	alcalinity_of_ash	magnesium	total_phenols	flavanoids	nonflavanoid_phenols	proanthocyanins	color_intensity	hue	od280/od315_of_diluted_wines	proline
0	14.23	1.71	2.43	15.6	127.0	2.80	3.06	0.28	2.29	5.64	1.04	3.92	1065.0
1	13.20	1.78	2.14	11.2	100.0	2.65	2.76	0.26	1.28	4.38	1.05	3.40	1050.0
2	13.16	2.36	2.67	18.6	101.0	2.80	3.24	0.30	2.81	5.68	1.03	3.17	1185.0
3	14.37	1.95	2.50	16.8	113.0	3.85	3.49	0.24	2.18	7.80	0.86	3.45	1480.0
4	13.24	2.59	2.87	21.0	118.0	2.80	2.69	0.39	1.82	4.32	1.04	2.93	735.0
```print(X.shape) print(y.shape)```													
$\begin{aligned} & (178,13) \\ & (178,) \end{aligned}$													

## PCA vs LDA



More info at: https://towardsdatascience.com/linear-discriminant-analysis-in-python-76b8b17817c2

## Tips for preparation

Here's a (non-exhaustive) list of methods and tools you should probably become familiar with ...
Maths

- linear algebra
- statistics
- vector calculus (for neural networks/gradient descent)


## Programming

- Stuff is mostly done in python (some people also like R, though I find it to be less versatile)
- Bread and butter stuff like numpy, scipy, pandas, sklearn to tinker around with smallish datasets (like in this presentation)
- Spark/hadoop, SQL and cloud services (AWS/GCP/Azure) for big data analytics - this one is huge. I use spark pretty extensively for my job
- Tensorflow/pytorch to play around with neural networks

Reach out via email/Linkedln if you have any further questions. Thanks!

