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Background

e BS, PhD in theoretical physics (dissertation in string theory)
e Data science/ML practictioner, started to transition mid-way through
grad school via coursework/projects

@ Unlike many other subjects, data science lies at the confluence of
many disciplines, including but not limited to: computer science,
statistics, applied maths, EE/signal processing, ...
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Convention

features

data =

samples
e o o 0 0 o
e o 06 0 0 o
e o o 0 0 o

Divyanshu Murli Dimensionality Reduction 4 /38



Introduction NGNSV

Why dimensionality reduction?

@ Method of easily exploring high-dimensional datasets

o Distill a dataset to its essence, in particular by choosing salient or
‘eigen’ features (more on this later)

@ Project a high-dimensional dataset down to low-dimensions for easy
interpretability and visualisation

@ Uncover the structure of a dataset in a (perhaps) unsupervised
manner, potentially for classification as well

@ Uncover features that account for the most variance in the data
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Introduction NGNSV

Methods of Dimensionality Reduction/Feature Reduction

@ Remove features by hand in an ad-hoc manner, and check effect of
performance on a a model of interest (e.g. neural network, logistic
regression, random forest, etc). Remove features that don't affect
model performance

o Feed through a random forest, select important features through e.g.
Gini purity/information gain
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Ovenvew
Methods of Dimensionality Reduction/Feature Reduction

@ Remove features by hand in an ad-hoc manner, and check effect of
performance on a a model of interest (e.g. neural network, logistic
regression, random forest, etc). Remove features that don't affect
model performance

o Feed through a random forest, select important features through e.g.
Gini purity/information gain

@ Select salient ‘features’ as directions of maximal variance: Principal
Component Analysis (unsupervised)

@ Select salient ‘features’ that maximally separate classes: Linear
Discriminant Analysis (supervised)

Divyanshu Murli Dimensionality Reduction 6 /38



Introduction Motivation

Let's look at an example of correlated data:
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Introduction Motivation

As you'd intuitively expect, there's a strong positive correlation between

these two variables, and and you can probably just draw on the most

important features:

Divyanshu Murli

Dimensionality Reduction

8 /38



Introduction Motivation

But, what if our dataset has 100, or maybe even 1,000 features? There's
no way we can possibly visualise that. And we definitely can't just draw
arrows like we did above.
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Introduction Motivation

But, what if our dataset has 100, or maybe even 1,000 features? There's
no way we can possibly visualise that. And we definitely can't just draw
arrows like we did above.

Enter PCA.
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Introduction Motivation

Before we get there though ...
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Singular Value Decomposition

Singular Value Decomposition (SVD)

X=UzVvT
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Mathematics
Introducing SVD

(Most) square matrices can be eigendecomposed, namely given a square
matrix A € R"*" we can write it as

A= PDP!
where P = [v1]...|v,] and D = diag(Aq, ..., \p).
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ST
Introducing SVD

(Most) square matrices can be eigendecomposed, namely given a square
matrix A € R"*" we can write it as
A= PDP!

where P = [v1]...|v,] and D = diag(Aq, ..., \p).
But most matrices aren’t square. And, practically all data matrices aren't
square.
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Mathematics
Introducing SVD

To generalise, it turns out that given any rectangular matrix X € R™*",

X=UzVvT’

where U and V are respectively m x m and n x n orthogonal matrices
whose columns are the left and right singular vectors of X. These are
generalisations of the eigenvectors of a square matrix.
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Mathematics
What is 2.7

The analogy of the eigenvalues of a square matrix, X is a rectangular

m X n matrix whose diagonal entries are the singular values. If m > n (as
is the case in most datasets; we typically have more samples than
features), it can be written as

o1

Divyanshu Murli Dimensionality Reduction 14 / 38



Mathematics
What is 2.7

The analogy of the eigenvalues of a square matrix, X is a rectangular

m X n matrix whose diagonal entries are the singular values. If m > n (as
is the case in most datasets; we typically have more samples than
features), it can be written as

o1

If X has column rank r < n, then only the first r singular values of X will
be nonzero.
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Mathematics
What is 2.7

The analogy of the eigenvalues of a square matrix, X is a rectangular

m X n matrix whose diagonal entries are the singular values. If m > n (as
is the case in most datasets; we typically have more samples than
features), it can be written as

o1

If X has column rank r < n, then only the first r singular values of X will
be nonzero. The same is true for eigendecomposition of a square matrix.
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ST
Computing Singular Values

Let u;, v; respectively be the rows and columns of U and V. The SVD can
equivalently be written as

X = ulalvlT + ...+ u,a,v,T
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ST
Computing Singular Values

Let u;, v; respectively be the rows and columns of U and V. The SVD can
equivalently be written as

X = ulalvlT + ...+ u,a,v,T

XXT =vuzxTu’ e ™M
XTX =veTyyT c rrxn
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ST
Computing Singular Values

Let u;, v; respectively be the rows and columns of U and V. The SVD can
equivalently be written as

X = ulalvlT + ...+ u,a,v,T

XXT =vuzxTu’ e ™M
XTX =veTyyT c rrxn

From above, columns of U are the eigenvectors of XXT and columns of V

are eigenvectors of X7 X. o2, ...,02 are eigenvalues of both X7 X and

XXT. Assuming m > n, XX T will have m — n additional zero eigenvalues.
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ST
SVD for approximation

o Often, storing a large matrix can be infeasible. How do we
approximate it?
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ST
SVD for approximation

o Often, storing a large matrix can be infeasible. How do we
approximate it?

@ More specifically, how do we give a rank k approximation?
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ST
SVD for approximation

o Often, storing a large matrix can be infeasible. How do we
approximate it?

@ More specifically, how do we give a rank k approximation?

e Even more specifically, given a matrix X € R™*" with rank r < n,
what's the ‘best’ rank k matrix B that approximates X for some
some k < r?
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Singular Value Decomposition Mathematics

SVD for approximation

To answer the question of ‘best’, we need a notion of distance. That is,
given B, we want to answer the optimisation question

min || X — B]|
B

where the minimum is taken over all rank k matrices B.
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ST
SVD for approximation

To answer the question of ‘best’, we need a notion of distance. That is,
given B, we want to answer the optimisation question

min || X — B]|
B

where the minimum is taken over all rank k matrices B. Here are a couple
of common choices of ‘distance’ one can use:

B
1811, = max 1251
xeRn || x|]

|Bllg = /02 + ...+ o7 (Frobenius norm)

o1 (spectral norm)
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Mathematics
Eckart-Young-Mirsky

Eckart-Young-Mirsky give a solution to the optimisation problem on the
previous slide:

IX = Bl = [[X = A«

where
A, — T T
k = 01U1Vy + ... + OkUkVy

is the optimal solution.
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Singular Value Decomposition Application: Image compression

Image compression

@ Given a generic (black and white) image represented as an m x n
matrix, one would need to store mn values.

@ However, by approximating this image with a rank k matrix, one
would need to store k(m + n) values.
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Singular Value Decomposition Application: Image compression

Image compression

@ Given a generic (black and white) image represented as an m x n
matrix, one would need to store mn values.

@ However, by approximating this image with a rank k matrix, one
would need to store k(m + n) values.

Define the compression ratio to be

k(m + n)
mn
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Application: Image compression
Reconstructing an image with SVD
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Sir r Value Decomposition Application: Image compression

Reconstructing an image with SVD

Compression ratio: 0.01

Compression ratio: 0.05

Compression ratio: 0.1

Compression ratio: 0.2

N
o i,
-
o
Compression ratio: 0.3 ‘Compression ratio: 0.4 o Compression ratio: 0.5 Compression ratio: 0.8
o .
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Singular Value Decomposition Application: Image compression

o Considering the image like a ‘dataset’, this suggests that we can
‘reconstruct’ the image from building blocks of rank one matrices.

@ This is exactly how PCA works: capture the salient information in a
dataset by projecting it onto the most important components.

o Said differently, PCA is a statistical interpretation of the SVD. We'll
see this below.
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Introducing PCA

Given tabular data

features

Xo =

samples
e o o 0 o o
e o o 0 o o
o o o 0 o o
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Principal Component Analysis SRS £l

Sample mean and covariance

Given data samples x, ..., Xmk (rows of Xp, 1 < k < n indexing features),
we can define the sample mean as

m
1
k:*E Xik
m <
i=1

Given a set of observations x(), ..., x(™) (rows of Xp) the sample
covariance is

m —

m
Qap = p— ; Xka — ta)(Xkb — 1b)
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Principal Component Analysis SRS £l

Sample mean and covariance

Given data samples x, ..., Xmk (rows of Xp, 1 < k < n indexing features),
we can define the sample mean as

1 m
Mk = - ;Xik
1=

Given a set of observations x(), ..., x(™) (rows of Xp) the sample
covariance is
1 m
Qab = —— Z(Xka — pa)(Xkb — fib)

m-—1
k=1

with 1 < a,b < n. (Recall Cov(X,Y) =E[(X —E(X))(Y —E(Y))].)
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S AT
PCA as a statistical interpretation of SVD

Define X to be the mean-subtracted matrix. Then, the covariance matrix
can be written as

Qux XTX
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S AT
PCA as a statistical interpretation of SVD

Define X to be the mean-subtracted matrix. Then, the covariance matrix
can be written as

Qux XTX

But this is what we saw earlier! (remember the blue equation). In fact, in

X"™X=veTsv’
Y'Y = diag(oy, ...,0,) and V is diagonalises X 7 X.
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S AT
PCA as a statistical interpretation of SVD

Define X to be the mean-subtracted matrix. Then, the covariance matrix
can be written as

Qux XTX

But this is what we saw earlier! (remember the blue equation). In fact, in

X'™X=vZ'zv’

Y'Y = diag(oy, ...,0,) and V is diagonalises X " X. The right singular
vectors of X (or the eigenvectors of X X) are the directions of variance of
the data, the top k directions of largest variance correspond to the top k
eigenvectors (arranged by eigenvalue).
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S AT
PCA as a statistical interpretation of SVD

Define X to be the mean-subtracted matrix. Then, the covariance matrix
can be written as
Qx XX

But this is what we saw earlier! (remember the blue equation). In fact, in

XTX=vz'zv’
Y'Y = diag(oy, ...,0,) and V is diagonalises X " X. The right singular
vectors of X (or the eigenvectors of X X) are the directions of variance of
the data, the top k directions of largest variance correspond to the top k
eigenvectors (arranged by eigenvalue). The singular values of X are the
variances themselves.
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AISTE N @I IR EWAGEIWSE  Application: clustering

Example with iris data

iris = datasets.load_tiris()
X = dris.data
y = iris.target

data = pd.DataFrame(iris.data, columns=iris.feature_names)
print(len(data))
data.head ()

150
sepal length (cm) sepal width (cm) petal length (cm) petal width (cm)

0 5.1 35 1.4 0.2
1 4.9 3.0 1.4 0.2
2 4.7 3.2 1.3 0.2
3 4.6 31 1.5 0.2
4 5.0 3.6 1.4 0.2
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ncipal Component An Application: clustering

Example with iris data

X_recentered = X - feature_means.

#Compute SVD

U, S, Vt = np.linalg.svd(X_recentered)
print(U.shape)

print(s. shape)

print(vt.shape)

(150, 150)

np.dot (X_recentered, V[:, 6])
np.dot (X_recentered, V[:, 11)

fig = plt.figure(figsize=(6,6), facecolor="white")
ig.add_subplot (111)

ax.scatter (PC1, PC2, c=y, cmap="rainbow", alpha=0.9, edgecolor="b")

ax.set_xlabel("PC1")

ax.set_ylabel ("PC2")

Text(0,0.5,'PC2')
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Linear Discriminant Analysis

Linear discriminant analysis

@ PCA is an excellent exploratory tool to understand the structure of a
dataset, in an unsupervised manner
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Linear Discriminant Analysis

Linear discriminant analysis

PCA is an excellent exploratory tool to understand the structure of a
dataset, in an unsupervised manner

Suppose we also had access to class labels — how can we utilise them
in dimensionality reduction?

Linear discriminant analysis (LDA) provides a way to reduce
dimensions whilst maximising the separation between classes

@ LDA is used both for classification as well as dimensionality reduction
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RLCETRDIEINEYN G EIWSEI  Setting up Fisher's problem

We'll be focussing on Fisher's setup for LDA.
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RLCETRDIEINEYN G EIWSEI  Setting up Fisher's problem

Fisher's problem

Suppose we have two classes, with data points xi, ..., xp,, € R” and
Y1, .-, ¥Yn, € R". Define The respective means are

n
1™

1= Xi

1% m § i
j=1

respectively for pp.
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RLCETRDIEINEYN G EIWSEI  Setting up Fisher's problem

Fisher's problem

Suppose we have two classes, with data points xi, ..., xp,, € R” and
Y1, .-, ¥Yn, € R". Define The respective means are

n

1 1
1:*5 Xj
K ny 4 i

Jj=1

respectively for pp. Let v € R” be the vector that optimally separates the
classes upon projection. Define the projected means to be

~ T
MlZ*E VX
ny

respectively for fiy.
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RLCETRDIEINEYN G EIWSEI  Setting up Fisher's problem

Fisher's problem

Define the within class scatter matrices to be

m
g= (v —n)
=1
m
=vT [ D 05— )5 —m)"
j=1
5

and respectively 5.
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RLCETRDIEINEYN G EIWSEI  Setting up Fisher's problem

Fisher's problem

Define the within class scatter matrices to be

m
§=> (vIx— i)
j=1
m
=vT [ Y =) —m)" | v
j=1
s
and respectively 53. Seek to maximise
(fix — fin)®
RV)="%—%—
ST + 85

wrt v.
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RLCETRDIEINEYN G EIWSEI  Setting up Fisher's problem

Fisher's problem

Define the within class scatter matrices to be

m
§=> (v —jn)
=1
m
=vT [ Y =) —m)" | v
j=1

and respectively 53. Seek to maximise

(fi1 — fi2)?
§2 + 82

R(v)

wrt v. that is, maximise the distance the means of classes are away from
one another relative to the spread of each class.
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RLCETRDIEINEYN G EIWSEI  Setting up Fisher's problem

Fisher's problem

Write the ratio as

where

S = (p1 — p2)(p1 — pi2) "
Sy =51+ %

are respectively the between and within class scatter matrices.
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RLCETRDIEINEYN G EIWSEI  Setting up Fisher's problem

Fisher's problem

Write the ratio as

where

S = (p1 — p2)(p1 — pi2) "
Sy =51+ %

are respectively the between and within class scatter matrices. Ratio is
maximised at v oc S, 1 (111 — p2) (cf generalised Rayleigh quotient).
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Setting up Fisher's problem
Multiclass case

We must maximise the same ratio (for k classes)

vTSpv

RV =75y

where

Sp=m(u — ) — )" + o 4 (e — ) (e — )"
Sw=51+5%+ ...+ s

Wi, n;, p are respectively class means, class numbers and total mean.
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Setting up Fisher's problem
Multiclass case

We must maximise the same ratio (for k classes)

vTSpv
ROV = 75y

where

Sp=m(u — ) — )" + o 4 (e — ) (e — )"
Sw=51+5%+ ...+ s

Wi, n;, p are respectively class means, class numbers and total mean.
(Generally, for k classes we must find the top k — 1 generalised
eigenvectors of Spv = AS,, v. In fact, the rank of S;, turns out to be k — 1,
generalising from the one-class case.)
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Linear Discriminant An

PCA vs LDA

wine = datasets. load_wine()

X = wine.data

y = wine.target

data = pd.DataFrame(wine.data, columns=wine.feature_names)

data.head()

alcohol  malic_acid
o 1423 7
11320 178
2 131 236
3 1437 195
a4 1324 259

print(X.shape)
print(y.shape)
(178, 13)
(178,)

Divyanshu Murl

ash alcalinity_of ash magnesium total_phenols flavanoids nonflavan

243 156 1270 280 308
214 n2 1000 265 276
267 86 1010 2.80 324
250 168 130 385 349
2.87 210 180 2.80 269

Application: LDA vs PCA head-to-head

L_phenols _proanthocyanins color_intensity hue

028 229 564 104
026 128 438 105
030 281 568 103
024 218 780 086
039 182 432 104

nality Reduction

0d280/0d315._of_diluted_wines

392
3.40

317
345

293

proline
1065.0
10500
1850
14800
7350
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[RRTEETICININENIACEIVSEIN  Application: LDA vs PCA head-to-head

PCA vs LDA

PCA LDA
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More info at: https://towardsdatascience.com/linear-discriminant-analysis-
in-python-76b8b17817c2
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Concluding comments

Tips for preparation

Here's a (non-exhaustive) list of methods and tools you should probably become
familiar with ...
Maths

@ linear algebra

@ statistics

@ vector calculus (for neural networks/gradient descent)
Programming

@ Stuff is mostly done in python (some people also like R, though I find it to
be less versatile)

@ Bread and butter stuff like numpy, scipy, pandas, sklearn to tinker around
with smallish datasets (like in this presentation)

@ Spark/hadoop, SQL and cloud services (AWS/GCP/Azure) for big data
analytics — this one is huge. | use spark pretty extensively for my job

@ Tensorflow/pytorch to play around with neural networks
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Concluding comments

Reach out via email/LinkedIn if you have any further questions. Thanks!

Divyanshu Murli Dimensionality Reduction 38 /38



	Introduction
	Overview
	Motivation

	Singular Value Decomposition
	Mathematics
	Application: Image compression

	Principal Component Analysis
	Some statistics
	Application: clustering

	Linear Discriminant Analysis
	Setting up Fisher's problem
	Application: LDA vs PCA head-to-head

	Concluding comments

