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Outline

Background

BS, PhD in theoretical physics (dissertation in string theory)

Data science/ML practictioner, started to transition mid-way through
grad school via coursework/projects

Unlike many other subjects, data science lies at the confluence of
many disciplines, including but not limited to: computer science,
statistics, applied maths, EE/signal processing, ...
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Convention

data =
sa
m
p
le
s



features︷ ︸︸ ︷
• • · · · · · · •
• • · · · · · · •
• • · · · · · · •
• • · · · · · · •
• • · · · · · · •
• • · · · · · · •
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Introduction Overview

Why dimensionality reduction?

Method of easily exploring high-dimensional datasets

Distill a dataset to its essence, in particular by choosing salient or
‘eigen’ features (more on this later)

Project a high-dimensional dataset down to low-dimensions for easy
interpretability and visualisation

Uncover the structure of a dataset in a (perhaps) unsupervised
manner, potentially for classification as well

Uncover features that account for the most variance in the data
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Introduction Overview

Methods of Dimensionality Reduction/Feature Reduction

Remove features by hand in an ad-hoc manner, and check effect of
performance on a a model of interest (e.g. neural network, logistic
regression, random forest, etc). Remove features that don’t affect
model performance

Feed through a random forest, select important features through e.g.
Gini purity/information gain

Select salient ‘features’ as directions of maximal variance: Principal
Component Analysis (unsupervised)

Select salient ‘features’ that maximally separate classes: Linear
Discriminant Analysis (supervised)
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Introduction Motivation

Let’s look at an example of correlated data:
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Introduction Motivation

As you’d intuitively expect, there’s a strong positive correlation between
these two variables, and and you can probably just draw on the most
important features:
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Introduction Motivation

But, what if our dataset has 100, or maybe even 1,000 features? There’s
no way we can possibly visualise that. And we definitely can’t just draw
arrows like we did above.

Enter PCA.
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Introduction Motivation

Before we get there though ...
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Singular Value Decomposition

Singular Value Decomposition (SVD)

X = UΣV T
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Singular Value Decomposition Mathematics

Introducing SVD

(Most) square matrices can be eigendecomposed, namely given a square
matrix A ∈ Rn×n, we can write it as

A = PDP−1

where P = [~v1|...|~vn] and D = diag(λ1, ..., λn).

But most matrices aren’t square. And, practically all data matrices aren’t
square.
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Singular Value Decomposition Mathematics

Introducing SVD

To generalise, it turns out that given any rectangular matrix X ∈ Rm×n,

X = UΣV T

where U and V are respectively m ×m and n × n orthogonal matrices
whose columns are the left and right singular vectors of X . These are
generalisations of the eigenvectors of a square matrix.
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Singular Value Decomposition Mathematics

What is Σ?

The analogy of the eigenvalues of a square matrix, Σ is a rectangular
m × n matrix whose diagonal entries are the singular values. If m > n (as
is the case in most datasets; we typically have more samples than
features), it can be written as

Σ =



σ1
. . .

σn


, σ1 ≥ ... ≥ σn

If X has column rank r < n, then only the first r singular values of X will
be nonzero. The same is true for eigendecomposition of a square matrix.
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Singular Value Decomposition Mathematics

Computing Singular Values

Let ui , vi respectively be the rows and columns of U and V . The SVD can
equivalently be written as

X = u1σ1v
T
1 + ...+ urσrv

T
r

XXT = UΣΣTUT ∈ Rm×m

XTX = VΣTΣV T ∈ Rn×n

From above, columns of U are the eigenvectors of XXT and columns of V
are eigenvectors of XTX . σ21, ..., σ

2
n are eigenvalues of both XTX and

XXT . Assuming m > n, XXT will have m − n additional zero eigenvalues.
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Singular Value Decomposition Mathematics

SVD for approximation

Often, storing a large matrix can be infeasible. How do we
approximate it?

More specifically, how do we give a rank k approximation?

Even more specifically, given a matrix X ∈ Rm×n with rank r ≤ n,
what’s the ‘best’ rank k matrix B that approximates X for some
some k < r?
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Singular Value Decomposition Mathematics

SVD for approximation

To answer the question of ‘best’, we need a notion of distance. That is,
given B, we want to answer the optimisation question

min
B
‖X − B‖

where the minimum is taken over all rank k matrices B.

Here are a couple
of common choices of ‘distance’ one can use:

‖B‖2 = max
x∈Rn

‖Bx‖
‖x‖

= σ1 (spectral norm)

‖B‖F =
√
σ21 + ...+ σ2k (Frobenius norm)
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Singular Value Decomposition Mathematics

Eckart-Young-Mirsky

Eckart-Young-Mirsky give a solution to the optimisation problem on the
previous slide:

‖X − B‖ ≥ ‖X − Ak‖

where
Ak = σ1u1v

T
1 + ...+ σkukv

T
k

is the optimal solution.
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Singular Value Decomposition Application: Image compression

Image compression

Given a generic (black and white) image represented as an m × n
matrix, one would need to store mn values.

However, by approximating this image with a rank k matrix, one
would need to store k(m + n) values.

Define the compression ratio to be

k(m + n)

mn
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Singular Value Decomposition Application: Image compression

Reconstructing an image with SVD
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Singular Value Decomposition Application: Image compression

Reconstructing an image with SVD
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Singular Value Decomposition Application: Image compression

Scree plot
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Singular Value Decomposition Application: Image compression

Considering the image like a ‘dataset’, this suggests that we can
‘reconstruct’ the image from building blocks of rank one matrices.

This is exactly how PCA works: capture the salient information in a
dataset by projecting it onto the most important components.

Said differently, PCA is a statistical interpretation of the SVD. We’ll
see this below.
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Principal Component Analysis

Introducing PCA

Given tabular data

X0 =
sa
m
p
le
s



features︷ ︸︸ ︷
• • · · · · · · •
• • · · · · · · •
• • · · · · · · •
• • · · · · · · •
• • · · · · · · •
• • · · · · · · •

Divyanshu Murli Dimensionality Reduction 24 / 38



Principal Component Analysis Some statistics

Sample mean and covariance

Given data samples x1k , ..., xmk (rows of X0, 1 ≤ k ≤ n indexing features),
we can define the sample mean as

µk =
1

m

m∑
i=1

xik

Given a set of observations x(1), ..., x(m) (rows of X0) the sample
covariance is

Qab =
1

m − 1

m∑
k=1

(xka − µa)(xkb − µb)

with 1 ≤ a, b ≤ n. (Recall Cov(X ,Y ) = E[(X − E(X ))(Y − E(Y ))].)
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Principal Component Analysis Some statistics

PCA as a statistical interpretation of SVD

Define X to be the mean-subtracted matrix. Then, the covariance matrix
can be written as

Q ∝ XTX

But this is what we saw earlier! (remember the blue equation). In fact, in

XTX = VΣTΣV T

ΣTΣ = diag(σ1, ..., σn) and V is diagonalises XTX . The right singular
vectors of X (or the eigenvectors of XTX ) are the directions of variance of
the data, the top k directions of largest variance correspond to the top k
eigenvectors (arranged by eigenvalue). The singular values of X are the
variances themselves.
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Principal Component Analysis Application: clustering

Example with iris data
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Principal Component Analysis Application: clustering

Example with iris data
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Linear Discriminant Analysis

Linear discriminant analysis

PCA is an excellent exploratory tool to understand the structure of a
dataset, in an unsupervised manner

Suppose we also had access to class labels – how can we utilise them
in dimensionality reduction?

Linear discriminant analysis (LDA) provides a way to reduce
dimensions whilst maximising the separation between classes

LDA is used both for classification as well as dimensionality reduction
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Linear Discriminant Analysis Setting up Fisher’s problem

We’ll be focussing on Fisher’s setup for LDA.
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Linear Discriminant Analysis Setting up Fisher’s problem

Fisher’s problem

Suppose we have two classes, with data points x1, ..., xn1 ∈ Rn and
y1, ..., yn2 ∈ Rn. Define The respective means are

µ1 =
1

n1

n1∑
j=1

xi

respectively for µ2.

Let v ∈ Rn be the vector that optimally separates the
classes upon projection. Define the projected means to be

µ̃1 =
1

n1

n1∑
j=1

vT xi

respectively for µ̃2.
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Linear Discriminant Analysis Setting up Fisher’s problem

Fisher’s problem

Define the within class scatter matrices to be

s̃21 =

n1∑
j=1

(vT xj − µ̃1)2

= vT

(
n1∑
j=1

(xj − µ1)(xj − µ1)T

)
︸ ︷︷ ︸

s1

v

and respectively s̃22 .

Seek to maximise

R(v) ≡ (µ̃1 − µ̃2)2

s̃21 + s̃22

wrt v . that is, maximise the distance the means of classes are away from
one another relative to the spread of each class.
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Linear Discriminant Analysis Setting up Fisher’s problem

Fisher’s problem

Write the ratio as

R(v) =
vTSbv

vTSwv

where

Sb = (µ1 − µ2)(µ1 − µ2)T

Sw = s1 + s2

are respectively the between and within class scatter matrices.

Ratio is
maximised at v ∝ S−1w (µ1 − µ2) (cf generalised Rayleigh quotient).
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Linear Discriminant Analysis Setting up Fisher’s problem

Multiclass case

We must maximise the same ratio (for k classes)

R(v) =
vTSbv

vTSwv

where

Sb = n1(µ1 − µ)(µ1 − µ)T + ...+ nk(µk − µ)(µk − µ)T

Sw = s1 + s2 + ...+ sk

µi , ni , µ are respectively class means, class numbers and total mean.

(Generally, for k classes we must find the top k − 1 generalised
eigenvectors of Sbv = λSwv . In fact, the rank of Sb turns out to be k − 1,
generalising from the one-class case.)
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Linear Discriminant Analysis Application: LDA vs PCA head-to-head

PCA vs LDA
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Linear Discriminant Analysis Application: LDA vs PCA head-to-head

PCA vs LDA

More info at: https://towardsdatascience.com/linear-discriminant-analysis-
in-python-76b8b17817c2
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Concluding comments

Tips for preparation

Here’s a (non-exhaustive) list of methods and tools you should probably become
familiar with ...
Maths

linear algebra

statistics

vector calculus (for neural networks/gradient descent)

Programming

Stuff is mostly done in python (some people also like R, though I find it to
be less versatile)

Bread and butter stuff like numpy, scipy, pandas, sklearn to tinker around
with smallish datasets (like in this presentation)

Spark/hadoop, SQL and cloud services (AWS/GCP/Azure) for big data
analytics – this one is huge. I use spark pretty extensively for my job

Tensorflow/pytorch to play around with neural networks
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Concluding comments

Reach out via email/LinkedIn if you have any further questions. Thanks!
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