
Application Monitoring 
& Measurement



Story time
In Your Future…



Like a Boss



Life is beautiful…

…then you get Users



And you don’t know what’s wrong



Knowledge is power

• Why does Customer X have 3% more timeouts at 
4:00am? 

• How many customers have >10% error response from 
Web Service Y (in the last 5 min, no the last 30 days!)? 

• Can I get notified when this happens? 

• Why was Customer Z’s API POST slow? 

• We used tools you built to quickly debug an issue, 
and verify the fix without asking you any questions



Essential Data



App Events
What's happening in your application? 

Classify messages with Log Levels. 

FATAL: Severe error event, most likely a crash.  Alert! 

ERROR: Error / Exception. Alert. 

WARN: Recoverable issue, less severe.  Alert? 

INFO: Informative, e.g. Server coming back online. 

DEBUG: Should be everything you need to debug an issue.



App Events
$log = new Logger(__CLASS__); 

try {…} 

catch (Exception $e) { 

  $log->error(“Hodor! {$e}”); 

} finally { 

  # Kidding, don’t do this… 

  $log->fatal(“Oh hai, on-call Ops friend! Conrad for President!!!”); 

} 

#### 

timestamp loglevel=ERROR Some_Class 

“Hodor! …useful stack trace telling you what line of code blew up…”



Web Server
Web servers provide useful access / error data 

127.0.0.1 - frank [10/Oct/2000:13:55:36 
-0700] "GET /apache_pb.gif HTTP/1.0" 200 
2326 

[Wed Oct 11 14:32:52 2000] [error] 
[client 127.0.0.1] client denied by 
server configuration: /export/home/live/
ap/htdocs/test



App Performance
How’s your application performing? 

Timers - Run time of key (all?) functions in call stack. 

Counters - Cache hits / misses, Batch sizes, whatever. 

{"total":"500|ms", "some_db_func":"150|ms", 
"some_util_func":"75;100,85|ms", “a_counter":"42|
c", "cache_hits":"2|c", "batch_size":"900|c"}



Statsd example

my 
app statsd backend

UDP:<port> <?>
log, 

Graphite, 
etc

App Performance



Moving on…

Largely a solved problem 

Some effort to instrument performance 

Stats aggregation daemons are shiny 

Valuable information is waiting to be discovered 

Build it to be measured from the start



Mapped Diagnostic 
Context



"User did something." 
"User did something else." 
"User did something." 
"User did something." 
"User is happy." 
"User did something else." 
"Software went boom. User is unhappy." 
"User is happy." 

Service 
A

Service 
B

Service 
C

User 2 User 3User 1



"User 1 did something." 
"User, 1, did something else." 
"User 3 did something." 
"User 2 did something." 
"User [user-2] is happy." 
"User, 3, did something else." 
"Software went boom. User is unhappy." 
"User [user-3] is happy."

Service 
A

User 2

Service 
B

Service 
C

User 3User 1



user=1 ip=1.0.0.0 Service_A "User did something." 
user=1 ip=1.0.0.0 Service_B "User did something else."  
user=3 ip=3.0.0.0 Service_A "User did something."  
user=2 ip=2.0.0.0 Service_A "User did something."  
user=2 ip=2.0.0.0 Service_C "User is happy." 
user=3 ip=3.0.0.0 Service_B "User did something else."  
user=1 ip=1.0.0.0 Service_C "Software went boom…”  
user=3 ip=3.0.0.0 Service_C "User is happy." 

Service 
A

User 2

Service 
B

Service 
C

User 3User 1 User n



Moving on…

DRY & Consistent 

What could be in MDC? 

timestamp (may get this other ways) 
thread / process id 
customer / user identifiers like ID, IP address 
host, event author (may get this other ways)



OK, now what?



Time to curl, grep, awk and mangle those log files! 
  

$2 <= 0.1 {na=na+1} ($2 > 0.1) && ($2 <= 0.2) {nb = nb+1} 
($2 > 0.2) && ($2 <= 0.3) {nc = nc+1} ($2 > 0.3) && ($2 <= 
0.4) {nd = nd+1} ($2 > 0.4) && ($2 <= 0.5) {ne = ne+1} ($2 
> 0.5) && ($2 <= 0.6) {nf = nf+1} ($2 > 0.6) && ($2 <= 0.7) 
{ng = ng+1} ($2 > 0.7) && ($2 <= 0.8) {nh = nh+1} ($2 > 
0.8) && ($2 <= 0.9) {ni = ni+1} ($2 > 0.9) {nj = nj+1} 
END {print na, nb, nc, nd, ne, nf, ng, nh, ni, nj, NR} 

Kidding





Indexer
Search, 

Visualization, 
Magic!

forwarder

App

metrics

appdaemon

web 
server

Splunk Overview



Resources

Apache Logging (Log4x) 

Measure Everything (Etsy post & Statsd)  

ELK (Elasticsearch, Logstash, Kibana)  

New Relic 

Splunk


