
1/20

Remote Method Invocation (RMI)

I Remote Method Invocation (RMI) allows us to get a reference
to an object on a remote host and use it as if it were on our
virtual machine. We can invoke methods on the remote
objects, passing real objects as arguments and getting real
objects as returned values (enhanced version of Remote
Procedure Call (RPC))

I RMI uses object serialization, dynamic class loading and
security manager to transport Java classes safely. Thus we can
ship both code and data around the network.

I Stubs and Skeletons. Stub is the local code that serves as a
proxy for a remote object. The skeleton is another proxy that
lives on the same host as the real object. The skeleton receives
remote method invocations from the stub and passes them on
to the object.

2/20

Remote Interfaces and Implementations

I A remote object implements a special remote interface that specifies which of
the object’s methods can be invoked remotely. The remote interface must
extend the java.rmi.Remote interface. Both the remote object and the stub
implement the remote interface.

public interface MyRemoteObject extends java.rmi.Remote {
public Widget doSomething() throws java.rmi.RemoteException;
public Widget doSomethingElse() throws java.rmi.RemoteException;

}
I The actual implementation would extend java.rmi.server.UnicastRemoteObject.

It must also provide a constructor. This is the RMI equivalent of the Object
class.

public class RemoteObjectImpl implements MyRemoteObject
extends java.rmi.server.UnicastRemoteObject {
public RemoteObjectImpl() throws java.rmi.RemoteException {...}
public Widget doSomething() throws java.rmi.RemoteException {...}
public Widget doSomethingElse() throws java.rmi.RemoteException {...}
// other non-public methods

}

3/20

Example 1: RMI Hello World

I Example is in the rmi/ex1-HelloServer folder.
I The remote interface: Hello.java
I The server that implements the remote interface: HelloServer.java
I A sample client: HelloClient.java
I Example 1: Running the RMI Hello World Example
I Start up the rmiregistry if it isn’t already running. It runs on port 1099 by

default. Choose a different port if you want to run your own copy (required in
the onyx lab). Make sure the class path is set correctly so rmiregistry can find
your classes.

export CLASSPATH=$(pwd):$CLASSPATH
rmiregistry [registryPort] &

I Then we start up the server as follows.
java -Djava.security.policy=mysecurity.policy hello.server.HelloServer &
Here mysecurity.policy is the security policy that is required.

I Now run the client as follows.
java hello.client.HelloClient hostname [registryPort]

I Once you are done, kill the server and the rmiregistry as shown below.
killall -9 rmiregistry

https://github.com/BoiseState/CS455-resources/blob/master/examples/rmi/ex1-HelloServer/hello/server/Hello.java
https://github.com/BoiseState/CS455-resources/blob/master/examples/rmi/ex1-HelloServer/hello/server/HelloServer.java
https://github.com/BoiseState/CS455-resources/blob/master/examples/rmi/ex1-HelloServer/hello/client/HelloClient.java

4/20

Example 1: RMI Hello World

server machineclient machine

rmiregistry

lookup

sayHello()

sayHello()HelloClient

HelloServer

HelloServer_Stub HelloServer_Skel

JVM

5/20

Example 1: RMI Hello World, Where is the Stub?

I rmi/ex1-HelloServer-with-rmic: Normally, the Java runtime
generates the stubs using dynamic proxy objects. We can also
build them statically using the rmic tool. However, this is
deprecated. This example, same as the first example, uses
rmic in the Makefile to generate static stubs.

6/20

RMI Server

I Instead of extending java.rmi.server.UnicastRemoteObject class, we can
use the static method UnicastRemoteObject.exportObject to create a
remote server. See below for a code snippet.

public class HelloServer implements Hello
{

/* ... */
public static void main(String args[]) {

if (args.length > 0) {
registryPort = Integer.parseInt(args[0]);

}
try {

HelloServer obj = new HelloServer("HelloServer");
Hello stub = (Hello) UnicastRemoteObject.exportObject(obj, 0);
Registry registry = LocateRegistry.getRegistry(registryPort);
registry.bind("HelloServer", obj);
System.out.println("HelloServer bound in registry");

} catch (Exception e) {
System.out.println("HelloServer err: " + e.getMessage());

}
}

}
I The port parameter is 0, which means it will pick a random available port for

RMI server port. For a firewalled environment, we could choose a specific port
number here and allow it through the firewall.

7/20

Example 2: RMI Square Server

I This example is in the folder rmi/ex2-SquareServer
I The server interface is in server/Square.java

--Square---
public interface Square extends java.rmi.Remote {

long square(long arg) throws java.rmi.RemoteException;
}

I The server implementation is in server/SquareServer.java
I A sample client is in client/SquareClient.java
I This example runs n calls to a remote square method, so that we can time

the responsiveness of remote calls.

https://github.com/BoiseState/CS455-resources/tree/master/examples/rmi/ex2-SquareServer

8/20

Example 3: Client Callback

I This example is in the folder rmi/ex3-Client-Callback
I A RMI version of the sockets-based Object server from earlier

examples. Compare the two approaches.
I Two packages callback.server and callback.client.

I The server interface is in Server.java and the server
implementation is in MyServer.java. The other classes in the
server package are the same as in the Object server example
from before.

I The main client class is in MyClient.java. The work class that
client uses is MyCalculation.java. Note that client is also a
remote server to allow callback from the server.

https://github.com/BoiseState/CS455-resources/tree/master/examples/rmi/ex3-Client-Callback

9/20

Example 3 (Client Callback): Server Interface

--Request--
// Could hold basic stuff like authentication, time stamps, etc.
public class Request implements java.io.Serializable { }

--WorkRequest.java--
public class WorkRequest extends Request {

public Object execute() { return null; }
}

--WorkListener.java--
public interface WorkListener extends Remote {

public void workCompleted(WorkRequest request, Object result)
throws RemoteException;

}

--StringEnumerationRequest.java--
import java.rmi.*;
public interface StringEnumerationRequest extends Remote {

public boolean hasMoreItems() throws RemoteException;
public String nextItem() throws RemoteException;

}

--Server.java--
import java.util.*;
public interface Server extends java.rmi.Remote {

Date getDate() throws java.rmi.RemoteException;
Object execute(WorkRequest work) throws java.rmi.RemoteException;
StringEnumerationRequest getList() throws java.rmi.RemoteException;
void asyncExecute(WorkRequest work, WorkListener listener)

throws java.rmi .RemoteException;
}

10/20

Example 3 (Client Callback): Server Implementation

public class MyServer
extends java.rmi.server.UnicastRemoteObject implements Server {

public MyServer() throws RemoteException { }
public Date getDate() throws RemoteException {

return new Date();
}

public Object execute(WorkRequest work) throws RemoteException {
return work.execute();

}
public StringEnumerationRequest getList() throws RemoteException {

return new StringEnumerator(
new String [] { "Foo", "Bar", "Gee" });

}
public void asyncExecute(WorkRequest request , WorkListener listener)

throws java.rmi.RemoteException {

Object result = request.execute();
System.out.println("async req");
listener.workCompleted(request, result);
System.out.println("async complete");

}
public static void main(String args[]) {

System.setSecurityManager(new RMISecurityManager());
try {

Server server = new MyServer();
Naming.rebind("NiftyObjectServer", server);
System.out.println("bound");

} catch (java.io.IOException e) {
System.out.println("// Problem registering server");
System.out.println(e);

}
}

}

11/20

Example 3 (Client Callback): Running the Example
This example is in the folder rmi/ex3-Client-Callback. Note that the client and
server need access to classes from both packages.

rmiregistry [registryPort] &

Then we start up the server as follows:

java -Djava.security.policy=mysecurity.policy callback.server.MyServer &

Here mysecurity.policy is the security policy that is required.
Now run the client as follows:

java -Djava.security.policy=mysecurity.policy MyClient hostname [registryPort]

Note that since the server calls back the client via RMI, the client also needs to have
a security policy. Once you are done, kill the server and the rmiregistry.

https://github.com/BoiseState/CS455-resources/tree/master/examples/rmi/ex3-Client-Callback

12/20

Example 4: Creating a Asynchronous Server/Client

I To convert the Example 3 into a true asynchronous server, we
would need a spawn off a thread for each asynchronous
request that would execute the request and then call the client
back with the result.

I We introduce a new class AysncExecuteThread that is called
from the asynExecute method.

I On the client side, we need to keep track of number of
asynchronous requests out to the server so the client doesn’t
quit until all the results have come back. Since the client is
also potentially multi-threaded, we will need to use
synchronization.

I We use an object for synchronization on counting outstanding
requests.

I Note also the client is now a server so we have to explicitly end
it when we are done.

I See example: rmi/ex4-Asynchronous-Server

https://github.com/BoiseState/CS455-resources/tree/master/examples/rmi/ex4-Asynchronous-Server

13/20

Example 5: Load classes over the network
See example in folder rmi/ex5-Load-Remote-Class.

import java.rmi.RMISecurityManager;
import java.rmi.server.RMIClassLoader;
import java.net.*;

public class LoadClient
{

public static void main(String[] args)
{

System.setSecurityManager(new RMISecurityManager());
try {

URL url = new URL(args[0]);
Class cl = RMIClassLoader.loadClass(url,"MyClient");
System.out.println(cl);
Runnable client = (Runnable)cl.newInstance();
client.run();
System.exit(0);

} catch (Exception e) {
System.out.println("Exception: " + e.getMessage());
e.printStackTrace();

}
}

}

14/20

Class Loading in Java

I The default class loader is used to load a class (whose main method is
run by using the java command) from the local CLASSPATH. All classes
used directly in that class are subsequently loaded by the default class
loader from the local CLASSPATH.

I The RMIClassLoader is used to load those classes not directly used by
the client or server application: the stubs and skeletons of remote
objects, and extended classes of arguments and return values to RMI
calls. The RMIClassLoader looks for these classes in the following
locations, in the order listed:

I The local CLASSPATH. Classes are always loaded locally if they exist
locally.

I For objects (both remote and nonremote) passed as parameters or
return values, the URL encoded in the marshal stream that contains
the serialized object is used to locate the class for the object.

I For stubs and skeletons of remote objects created in the local virtual
machine, the URL specified by the local java.rmi.server.codebase
property is used.

15/20

Dynamic downloading of classes by the RMI Class Loader

I Start up the rmiregistry. Make sure you do not start it from
the server folder.

I If you do start the rmiregistry and it can find your stub classes
in CLASSPATH, it will not remember that the loaded stub
class can be loaded from your server’s code base, specified by
the java.rmi.server.codebase property when you started up your
server application.

I Therefore, the rmiregistry will not convey to clients the true
code base associated with the stub class and, consequently,
your clients will not be able to locate and to load the stub
class or other server-side classes.

I The server and client machines both need to be running a web
server. The folders containing the server and client code both
need to be accessible via the web.

16/20

Example 3 (revisited): Dynamic downloading of classes
See example in the folder rmi/ex3-Client-Callback

The following shows a sample server start up, where the server is running on onyx, which has a
webserver running on it.

currdir=`pwd`
cd /
rmiregistry &
cd $currdir

java -Djava.rmi.server.codebase="http://onyx.boisestate.edu/~amit/rmi/ex3-Client-Callback/"
-Djava.security.policy=mysecurity.policy callbck.server.MyServer

The following shows a sample client start up, where the client is running on the host cs, which
also has a webserver running on it.

java \
-Djava.rmi.server.codebase=\
"http://cs.boisestate.edu/~amit/teaching/455/rmi/ex3-Client-Callback/"\

-Djava.security.policy=mysecurity.policy callback.client.MyClient onyx

17/20

Example 6: RMI and Thread Safety

I The default RMI implementation is multi-threaded. So if
multiple clients call the server, all the method invocations can
happen simultaneously, causing race conditions. The same
method may also be run by more than one thread on behalf of
one or more clients. Hence we must write the server to be
thread-safe.

I Use the synchronized keyword to ensure thread-safety.
I See example : rmi/ex6-Thread-Safety demonstrates the

problem and a solution.

https://github.com/BoiseState/CS455-resources/tree/master/examples/rmi/ex6-Thread-Safety

18/20

More Examples

I rmi/ex7-PassingArgsInRMI
I rmi/ex7-with-timeout
I rmi/ex9-HelloServer-2-interfaces

https://github.com/BoiseState/CS455-resources/tree/master/examples/rmi/ex7-PassingArgsInRMI
https://github.com/BoiseState/CS455-resources/tree/master/examples/rmi/ex8-with-timeout
https://github.com/BoiseState/CS455-resources/tree/master/examples/rmi/ex9-HelloServer-2-interfaces

19/20

RMI through Firewalls

I Here is what ports RMI uses:
I The RMI Registry uses port 1099 (or whatever port you

specified to it when you started it). This is what the clients
will use to make the initial connection.

I Client and server (stubs, remote objects) communicate over
random ports. The communication is started via a socket
factory which uses 0 as starting port, which means "use any
port that’s available" between 0 and 65535.

I Here is how we can get this work with firewalls.
I Simply open all non-privileged ports on the server. This is fine

for testing but obviously not desirable for production system!
I Use a custom RMI socket factory and fix the port used in it.

I See the javadocs for RMISocketFactory
I Official Java guide for custom socket factories:

http://docs.oracle.com/javase/8/docs/technotes/
guides/rmi/socketfactory/

https://docs.oracle.com/javase/8/docs/api/java/rmi/server/RMISocketFactory.html
http://docs.oracle.com/javase/8/docs/technotes/guides/rmi/socketfactory/
http://docs.oracle.com/javase/8/docs/technotes/guides/rmi/socketfactory/

20/20

RMI: Further Topics

I RMI Object Persistence. RMI activation allows a remote
object to be stored away (in a database, for example) and
automatically reincarnated when it is needed.

I RMI, CORBA, and IIOP. CORBA (Common Object Request
Broker Architecture) is a distributed object standard that
allows objects to be passed between programs written in
different languages. IIOP (Internet Inter-Object Protocol) is
being used by RMI to allow limited RMI-to-CORBA
interoperability.

