
Tanenbaum & Van Steen, Distributed Systems: Principles and Paradigms, 2e, (c) 2007 Prentice-Hall, Inc. All rights reserved. 0-13-239227-5

DISTRIBUTED SYSTEMS
Principles and Paradigms

Second Edition
ANDREW S. TANENBAUM

MAARTEN VAN STEEN

Chapter 5
Naming

The Naming of Cats

T. S. Eliot

The naming of Cats is a difficult matter,
It isn't just one of your holiday games;

You may think at first I'm mad as a hatter
When I tell you, a cat must have THREE DIFFERENT NAMES

. . .

“What's in a name? That which we call a rose
By any other name would smell serve as sweet a method

modified from Romeo and Juliet (II, ii, 1-2)

Tanenbaum & Van Steen, Distributed Systems: Principles and Paradigms, 2e, (c) 2007 Prentice-Hall, Inc. All rights reserved. 0-13-239227-5

Overview

Names are used to refer to entities, locations,
resources and more. We need to resolve a name
to the entity it refers to. The naming system may
itself be implemented in a distributed fashion.

 How to organize and implement human friendly
names. E.g. files systems, World Wide Web

 Locating entities in a way that is independent of
current location from their names

 Resolving names by means of entity attributes

Tanenbaum & Van Steen, Distributed Systems: Principles and Paradigms, 2e, (c) 2007 Prentice-Hall, Inc. All rights reserved. 0-13-239227-5

Names, Identifiers and Addresses (1)

Properties of a true identifier:

An identifier refers to at most one entity.

Each entity is referred to by at most one
identifier.

An identifier always refers to the same entity

Tanenbaum & Van Steen, Distributed Systems: Principles and Paradigms, 2e, (c) 2007 Prentice-Hall, Inc. All rights reserved. 0-13-239227-5

Names, Identifiers and Addresses (2)
A name in a distributed system is a string of bits or

characters used to refer to an entity. Entity is something
that is operated on using some access point. The name of
the access point is called an address.

Entities: hosts, printers, disks, files, processes, users,
mailboxes, web pages, graphical windows, messages,
network connections, etc.

An entity may change its access point over course of time.
Thus the address cannot be treated as the name of the
entity. Moreover an entity may have more than one access
point. Location independent name is separate from the
address of the access point.

An identifier is an unambiguous reference to an entity.

We need a universally unique identifier. How to generate a
Universally Unique Identifier?

Tanenbaum & Van Steen, Distributed Systems: Principles and Paradigms, 2e, (c) 2007 Prentice-Hall, Inc. All rights reserved. 0-13-239227-5

Names, Identifiers and Addresses (3)
Check out java.util.UUID for a class that generates a

Universally Unique Identifier

The RFC 4122 (A Universally Unique IDentifier (UUID)
URN Namespace) proposes several ways of creating
UUIDs.

https://www.ietf.org/rfc/rfc4122.txt

Tanenbaum & Van Steen, Distributed Systems: Principles and Paradigms, 2e, (c) 2007 Prentice-Hall, Inc. All rights reserved. 0-13-239227-5

Types of Naming Systems

 Flat naming: The identifier is simply a random bit string. It
does not contain any information whatsoever on how to
locate an access point of its associated entity. Good for
machines.

 Structured naming: Composed of simple human-readable
names. Examples are file system naming and host naming
on the Internet.

 Attribute-based naming: Allows an entity to be described
by (attribute, value) pairs. This allows a user to search
more effectively by constraining some of the attributes.

Tanenbaum & Van Steen, Distributed Systems: Principles and Paradigms, 2e, (c) 2007 Prentice-Hall, Inc. All rights reserved. 0-13-239227-5

Flat Naming Systems

 Broadcasting and multicasting

 Forwarding pointers

 Home-based approaches

 Distributed hash tables

 Hierarchical approaches

Tanenbaum & Van Steen, Distributed Systems: Principles and Paradigms, 2e, (c) 2007 Prentice-Hall, Inc. All rights reserved. 0-13-239227-5

Broadcasting/Multicasting

◼ LANs offer an efficient broadcasting facility, We can use that for the
mapping.
◼ A message containing the identity of the entity is broadcast to

each machine
◼ Only the machines that can offer access to that entity send a reply

containing the address of the access point.
◼ Address Resolution Protocol (ARP). Used on a LAN to find the

data-link (MAC) address of a machine given only the IP address.
◼ Check man arp on Linux or run the arp command in the lab!
◼ A more efficient approach for larger networks is multicasting, by

which only a restricted group of machines receive the request.

Tanenbaum & Van Steen, Distributed Systems: Principles and Paradigms, 2e, (c) 2007 Prentice-Hall, Inc. All rights reserved. 0-13-239227-5

Forwarding Pointers (1)

◼ When an entity moves from A to B, it leaves behind in A a reference to its
new location at B.

◼ The main advantage of this approach is its simplicity: as soon as an entity
has been located using a traditional naming service, a client can look up
the current address by following the chain of forwarding pointers.

◼ It is important to keep the forwarding chains relatively short and to ensure
that the forwarding pointers are robust.

◼ Example: Remote objects that can move from host to host.
■ A server stub contains either a local reference to the actual object or a

local reference to a remote client stub for that object.
■ Whenever an object moves from address A to B, it leaves behind a

client stub in its place on A and installs a server stub that refers to it in
B. This makes the migration completely transparent to a client.

Tanenbaum & Van Steen, Distributed Systems: Principles and Paradigms, 2e, (c) 2007 Prentice-Hall, Inc. All rights reserved. 0-13-239227-5

Forwarding Pointers (2)

Figure 5-1. The principle of forwarding pointers
using (client stub, server stub) pairs.

Tanenbaum & Van Steen, Distributed Systems: Principles and Paradigms, 2e, (c) 2007 Prentice-Hall, Inc. All rights reserved. 0-13-239227-5

Forwarding Pointers (3)

Figure 5-2. Redirecting a forwarding pointer by
storing a shortcut in a client stub.

Tanenbaum & Van Steen, Distributed Systems: Principles and Paradigms, 2e, (c) 2007 Prentice-Hall, Inc. All rights reserved. 0-13-239227-5

Forwarding Pointers (4)

Figure 5-2. Redirecting a forwarding pointer by
storing a shortcut in a client stub.

Tanenbaum & Van Steen, Distributed Systems: Principles and Paradigms, 2e, (c) 2007 Prentice-Hall, Inc. All rights reserved. 0-13-239227-5

Forwarding Pointers (5)

◼ Chains can be short-cut by sending a response directly to the
initiating client stub or along the reverse path of forwarding
pointers. What are the pros and cons of the two approaches?

◼ Makes it easy to pass remote object references among
processes. Why?

◼ To overcome crash of a process in the chain, we always keep
a fault-tolerant reference to the current location of an object
on the machine it was created. Then we need a way for the
home location to change. This is usually done via traditional
naming services.

Tanenbaum & Van Steen, Distributed Systems: Principles and Paradigms, 2e, (c) 2007 Prentice-Hall, Inc. All rights reserved. 0-13-239227-5

Locating Mobile Entities

Traditional naming systems are primarily used for naming entities
that have a fixed location. They are not well-suited for supporting
name-to-address mappings that change regularly. Suppose an
entity moves to a new address. How do we handle this?

◼ Record the new address in the original DNS database.
 Problem: If entity moves again, the update becomes a remote
 operation, possibly taking long time to complete

◼ Record the new name, creating a symbolic link.
 Problem: Each lookup now takes two operations. Also each move of
 the entity adds another level of lookup.

 Solution: Separate naming from locating entities by introducing
 identifiers. An entity has a unique identifier that never changes.

Tanenbaum & Van Steen, Distributed Systems: Principles and Paradigms, 2e, (c) 2007 Prentice-Hall, Inc. All rights reserved. 0-13-239227-5

Home-Based Approach

Figure 5-3. The principle of Mobile IP.

Tanenbaum & Van Steen, Distributed Systems: Principles and Paradigms, 2e, (c) 2007 Prentice-Hall, Inc. All rights reserved. 0-13-239227-5

Distributed Hash Tables (1)

A distributed technique on resolving an identifier to the
address of an associated entity.

Selected applications
 BTDigg: BitTorrent DHT search engine

 Oracle Coherence: An in-memory data grid built on a Java DHT
implementation

 WebSphere eXtreme Scale: proprietary DHT implementation by IBM, used for
object caching

 Coral Content Distribution Network

 YaCy: Java-based distributed search engine

Tanenbaum & Van Steen, Distributed Systems: Principles and Paradigms, 2e, (c) 2007 Prentice-Hall, Inc. All rights reserved. 0-13-239227-5

Distributed Hash Tables (1)

Chord system: An m-bit (usually 128 or 160 bits) identifier
space to assign randomly chosen identifiers to nodes as well
as specific entities.

An entity with key k falls under the jurisdiction of the node with
the smallest identifier id ≥ k. This node is referred to as the
successor of k and denoted as succ(k).

How to resolve a key k to the address of succ(k)?

 Linear search: Each node keeps track the successor succ(p+1) and predecessor
pred(p). A node can then pass along a request to resolve to one of its two
neighbors unless pred)p) < k ≤ p in which case it returns its own address. This
would be slow....

Tanenbaum & Van Steen, Distributed Systems: Principles and Paradigms, 2e, (c) 2007 Prentice-Hall, Inc. All rights reserved. 0-13-239227-5

Distributed Hash Tables (2)

How to efficiently resolve a key k to the address of succ(k)?

 Unbounded binary search: Each node maintains a finger table of at most m
entries
 FTp[i] = succ(p + 2i-1)

 The ith entry points to the first node succeeding p by at least 2i-1. These are
exponentially increasing short-cuts in the identifier space

 To look up a key k, a node p will then forward the request to node q with index
j in p’s finger table where:
 q = FTp[j] ≤ k < FTp[j+1]

 Uses modulo arithmetic

Tanenbaum & Van Steen, Distributed Systems: Principles and Paradigms, 2e, (c) 2007 Prentice-Hall, Inc. All rights reserved. 0-13-239227-5

Distributed Hash Tables (3)
General Mechanism

Figure 5-4.
Resolving key
26 from node 1
and key 12 from
node 28 in a
Chord system.

Tanenbaum & Van Steen, Distributed Systems: Principles and Paradigms, 2e, (c) 2007 Prentice-Hall, Inc. All rights reserved. 0-13-239227-5

Distributed Hash Tables (4)

How to add/remove nodes? Suppose node p wants to join.
Contact an arbitrary node and request a lookup for succ(p+1).
Removal is also easy if each node also keeps track of their
predecessor.

Keeping finger tables up-to-date is more complex. Each node
q regularly runs a simple procedure that contacts succ(q+1)
and requests it to return pred(succ(q+1))

Have a background thread/process check each entry in the
table.

Have each node periodically check whether its predecessor is
alive. If there is no response, it marks it’s predecessor to be
“unknown.” This gets set when a node is updating its link to
the next known node and finds that node’s predecessor to be
unknown.

Tanenbaum & Van Steen, Distributed Systems: Principles and Paradigms, 2e, (c) 2007 Prentice-Hall, Inc. All rights reserved. 0-13-239227-5

Distributed Hash Tables (5)

Exploiting network proximity:

 Topology-based assignment of node identifiers.

 Proximity routing: Nodes maintain a list of alternatives to forward a request to.

 Proximity neighbor selection: Optimize routing tables such that the nearest
node is selected as neighbor. This implies that there are more nodes to choose
from.

 Iterative lookup: The node returns the network address of the next node found
to the requesting process, which then iterates the lookup with the next node,

 Recursive lookup: Let a node forward the lookup request to the next node.

Tanenbaum & Van Steen, Distributed Systems: Principles and Paradigms, 2e, (c) 2007 Prentice-Hall, Inc. All rights reserved. 0-13-239227-5

Hierarchical Approaches (1)

Figure 5-5. Hierarchical organization of a location service into
domains, each having an associated directory node.

Tanenbaum & Van Steen, Distributed Systems: Principles and Paradigms, 2e, (c) 2007 Prentice-Hall, Inc. All rights reserved. 0-13-239227-5

Hierarchical Approaches (2)

Figure 5-6. An example of storing information of an entity
having two addresses in different leaf domains.

Tanenbaum & Van Steen, Distributed Systems: Principles and Paradigms, 2e, (c) 2007 Prentice-Hall, Inc. All rights reserved. 0-13-239227-5

Hierarchical Approaches (3)

Figure 5-7. Looking up a location in a hierarchically
organized location service.

Tanenbaum & Van Steen, Distributed Systems: Principles and Paradigms, 2e, (c) 2007 Prentice-Hall, Inc. All rights reserved. 0-13-239227-5

Hierarchical Approaches (4)

Figure 5-8. (a) An insert request is forwarded to the
first node that knows about entity E.

Tanenbaum & Van Steen, Distributed Systems: Principles and Paradigms, 2e, (c) 2007 Prentice-Hall, Inc. All rights reserved. 0-13-239227-5

Hierarchical Approaches (5)

Figure 5-8. (b) A chain of forwarding pointers
to the leaf node is created.

Tanenbaum & Van Steen, Distributed Systems: Principles and Paradigms, 2e, (c) 2007 Prentice-Hall, Inc. All rights reserved. 0-13-239227-5

Structured Naming

▪ Name spaces
▪ Name resolution
▪ Name space implementation
▪ Example: Domain Name System (DNS)boise

Tanenbaum & Van Steen, Distributed Systems: Principles and Paradigms, 2e, (c) 2007 Prentice-Hall, Inc. All rights reserved. 0-13-239227-5

Name Spaces (1)

Figure 5-9. A general naming graph with a single root node.

Tanenbaum & Van Steen, Distributed Systems: Principles and Paradigms, 2e, (c) 2007 Prentice-Hall, Inc. All rights reserved. 0-13-239227-5

Name Resolution

▪ The process of looking up a name is called name
resolution. Given a path name, it should be possible to look
up any information stored in the node referred to by that
name

▪ Knowing how and where to start name resolution is
generally referred to as closure mechanism

▪ Use of aliases: hard links and symbolic links

Tanenbaum & Van Steen, Distributed Systems: Principles and Paradigms, 2e, (c) 2007 Prentice-Hall, Inc. All rights reserved. 0-13-239227-5

Linking and Mounting (1)

Figure 5-11. The concept of a symbolic link
explained in a naming graph.

Tanenbaum & Van Steen, Distributed Systems: Principles and Paradigms, 2e, (c) 2007 Prentice-Hall, Inc. All rights reserved. 0-13-239227-5

Linking and Mounting (2)

◼ Distributed name spaces can be merged transparently
using the concept of mount points. To mount a remote
name space in a distributed system requires at least the
following information:
◼ Name of an access protocol
◼ Name of the server
◼ Name of the mounting point in the foreign name space

◼ NFS (Network File System) is a distributed file system
that comes with a protocol that describes precisely how
a client can access a file stored on a remote (NFS)
server

Tanenbaum & Van Steen, Distributed Systems: Principles and Paradigms, 2e, (c) 2007 Prentice-Hall, Inc. All rights reserved. 0-13-239227-5

Linking and Mounting (3)

Figure 5-12. Mounting remote name spaces
through a specific access protocol.

Tanenbaum & Van Steen, Distributed Systems: Principles and Paradigms, 2e, (c) 2007 Prentice-Hall, Inc. All rights reserved. 0-13-239227-5

Name Space Implementation

◼ A name space is implemented by a naming service that
allows users to add, remove and look up names. It is
implemented by name server(s)

◼ For a distributed system limited to a LAN, it may be
feasible to implement the name service with a single
name server

◼ However, in a large-scale distributed system spread
across a large geographical area, it is necessary to
distribute the implementation over many name servers

Tanenbaum & Van Steen, Distributed Systems: Principles and Paradigms, 2e, (c) 2007 Prentice-Hall, Inc. All rights reserved. 0-13-239227-5

Name Space Distribution (1)

Figure 5-13. An example partitioning of the DNS name space,
including Internet-accessible files, into three layers.

Tanenbaum & Van Steen, Distributed Systems: Principles and Paradigms, 2e, (c) 2007 Prentice-Hall, Inc. All rights reserved. 0-13-239227-5

Name Space Distribution (2)

Figure 5-14. A comparison between name servers for
implementing nodes from a large-scale name space
partitioned into a global layer, an administrational

layer, and a managerial layer.

Tanenbaum & Van Steen, Distributed Systems: Principles and Paradigms, 2e, (c) 2007 Prentice-Hall, Inc. All rights reserved. 0-13-239227-5

Implementation of Name Resolution (1)

Figure 5-15. The principle of iterative name resolution.

Tanenbaum & Van Steen, Distributed Systems: Principles and Paradigms, 2e, (c) 2007 Prentice-Hall, Inc. All rights reserved. 0-13-239227-5

Implementation of Name Resolution (2)

Figure 5-16. The principle of recursive name resolution.

Tanenbaum & Van Steen, Distributed Systems: Principles and Paradigms, 2e, (c) 2007 Prentice-Hall, Inc. All rights reserved. 0-13-239227-5

Implementation of Name Resolution (3)
◼ Recursive name resolution allows each name server to

gradually learn the address of each name server
responsible for lower-level nodes. As a result, caching
can be effectively used to enhance performance.

◼ Iterative name resolution, caching is necessarily
restricted to the client’s name resolver. To improve
performance, many organizations use a local
intermediate name server that is shared by their client
machines

◼ Recursive name resolution is often cheaper with respect
to communication

◼ Recursive name resolution puts a higher performance
demand on each name server. Thus name servers at the
global layer only support iterative resolution.

Tanenbaum & Van Steen, Distributed Systems: Principles and Paradigms, 2e, (c) 2007 Prentice-Hall, Inc. All rights reserved. 0-13-239227-5

Implementation of Name Resolution (4)

Figure 5-17. Recursive name resolution of <nl, vu, cs, ftp>. Name
servers cache intermediate results for subsequent lookups.

Tanenbaum & Van Steen, Distributed Systems: Principles and Paradigms, 2e, (c) 2007 Prentice-Hall, Inc. All rights reserved. 0-13-239227-5

Implementation of Name Resolution (5)

Figure 5-18. The comparison between recursive and iterative
name resolution with respect to communication costs.

Tanenbaum & Van Steen, Distributed Systems: Principles and Paradigms, 2e, (c) 2007 Prentice-Hall, Inc. All rights reserved. 0-13-239227-5

DNS: Domain Name Service (1)
◼ One of the largest distributed system in use today
◼ Used for mapping hostnames to IP addresses on the Internet
◼ Uses an iterative lookup by default, with recursive lookup as an option

◼ The three major components are: Domain Name Space and
Resource Records

◼ Name Servers are server programs which hold information about
 the domain tree's structure and set information

◼ Resolvers are programs that extract information from name
servers in response to client requests. Resolvers must be
able to access at least one name server and use that name
server's information to answer a query directly, or pursue the
query using referrals to other name servers

Look up RFC 1034 and RFC 1035 for more information.

Tanenbaum & Van Steen, Distributed Systems: Principles and Paradigms, 2e, (c) 2007 Prentice-Hall, Inc. All rights reserved. 0-13-239227-5

DNS:Domain Name Service (2)

◼ From the user's point of view, the domain system is accessed through
a simple library or system call to a local resolver. The domain space
consists of a single tree and the user can request information from
any section of the tree

◼ From the resolver's point of view, the domain system is composed of
an unknown number of name servers. Each name server has one or
more pieces of the whole domain tree's data, but the resolver views
each of these databases as essentially static

◼ From a name server's point of view, the domain system consists of
separate sets of local information called zones. The name server has
local copies of some of the zones. The name server must periodically
refresh its zones from master copies in local files or foreign name
servers. The name server must concurrently process queries that
arrive from resolvers

Tanenbaum & Van Steen, Distributed Systems: Principles and Paradigms, 2e, (c) 2007 Prentice-Hall, Inc. All rights reserved. 0-13-239227-5

DNS:Domain Name Service (3)

◼ A label has a maximum length of 63 characters. A path is limited to
255 characters. Labels are separated by dots, starting with the
rightmost dot that represents the root. So the proper name for
cs.boisestate.edu is cs.boisestate.edu. (the rightmost dot is usually
omitted for readability)

◼ The name space is a tree. A subtree is called a domain. A path name
to its root node is called a domain name

◼ The contents of a node is formed by a collection of resource records.
There are various types of resource records.

◼ A domain can be implemented by several (non-overlapping) zones.
An SOA (Start Of Authority) resource record contains information
about the name server for that zone

◼ Each host has a canonical or primary name identified by a resource
record labeled as A. They can have several aliases using the CNAME
record

Tanenbaum & Van Steen, Distributed Systems: Principles and Paradigms, 2e, (c) 2007 Prentice-Hall, Inc. All rights reserved. 0-13-239227-5

DNS: Domain Name Service (4)

◼ An A (address) record represents a particular host in the Internet. If a
host has several IP addresses, the node will contain an A record for
each address

◼ An MX (mail exchange) record is a symbolic link to a node
representing a mail server. There may be several MX records stored
in a node

◼ An SRV (server) record contains the name of a server for a specific
type of service. For example, _http._tcp.cs.vu.nl could be a SRV
record that points to a web server.

◼ Nodes that represent a zone contain one or more NS (name server)
records

◼ Inverse mapping of IP addresses to host names is maintained with
PTR (pointer) records. It keeps a domain named in-addr.arpa, which
nodes that represent Internet hosts and which are named by the IP
address of the represented host

Tanenbaum & Van Steen, Distributed Systems: Principles and Paradigms, 2e, (c) 2007 Prentice-Hall, Inc. All rights reserved. 0-13-239227-5

DNS: Domain Name Service (5)

Figure 5-19. The most important types of resource records
forming the contents of nodes in the DNS name space.

Tanenbaum & Van Steen, Distributed Systems: Principles and Paradigms, 2e, (c) 2007 Prentice-Hall, Inc. All rights reserved. 0-13-239227-5

DNS: Domain Name Service (6)

◼ The DNS name space is divided into a global layer and an
administrational layer. The managerial layer, which is generally
formed by local file systems, is formally not part of the DNS

◼ Each zone is implemented by a name server, which is virtually always
replicated for availability. Updates are handled by the primary name
server by modifying DNS database local to the primary name server.
Secondary name servers request the primary server to transfer its
content via a zone transfer

◼ A DNS database is implemented as a collection of text files, of which
the most important one contains all the nodes in a particular zone

◼ A SOA record also contains a serial number (that must be
incremented when any resource record is changed), refresh, retry,
expire and min TTL (Time To Live) for the zone

Tanenbaum & Van Steen, Distributed Systems: Principles and Paradigms, 2e, (c) 2007 Prentice-Hall, Inc. All rights reserved. 0-13-239227-5

DNS: Domain Name Service (7)

Figure 5-20. An excerpt from the DNS
database for the zone cs.vu.nl.

Tanenbaum & Van Steen, Distributed Systems: Principles and Paradigms, 2e, (c) 2007 Prentice-Hall, Inc. All rights reserved. 0-13-239227-5

DNS: Domain Name Service (8)

Figure 5-20. An excerpt from the DNS
database for the zone cs.vu.nl.

Tanenbaum & Van Steen, Distributed Systems: Principles and Paradigms, 2e, (c) 2007 Prentice-Hall, Inc. All rights reserved. 0-13-239227-5

DNS: Domain Name Service (9)
◼ DNS primarily uses UDP on port number 53 to serve requests.

DNS queries/replies consist of a single UDP packet. TCP is
used when the response data size exceeds 512 bytes, or for
tasks such as zone transfers

◼ Useful exercises:
◼ Setup a caching name server at your home machine. This

should speed up web browsing significantly
◼ Install a name server (BIND is the most common one) and

setup a name server for your local network at home

Tanenbaum & Van Steen, Distributed Systems: Principles and Paradigms, 2e, (c) 2007 Prentice-Hall, Inc. All rights reserved. 0-13-239227-5

DNS: Domain Name Service (10)
◼ The DNS is controlled by ICANN (Internet Corporation for

Assigned Names and Numbers) but the root zones are
controlled by US Department of Commerce

◼ Thirteen root-servers that are highly distributed and
resilient.

◼ DNS security issues
◼ DNS cache poisoning
◼ Domain Name System Security Extensions (DNSSEC)

to have cryptographically signed transactions
◼ Phishing

◼ Discuss bigger DNS examples

Tanenbaum & Van Steen, Distributed Systems: Principles and Paradigms, 2e, (c) 2007 Prentice-Hall, Inc. All rights reserved. 0-13-239227-5

DNS: Domain Name Service (10)
Boise State DNS System

◼ Adonis 1000 appliances from Bluecat to manage our DNS. The boxes
are Linux under the hood with a GUI client for ease of management.
Two replicated name servers

◼ Bind version 9.7.4-P1

◼ 12000+ A resource records, 500+ CNAME records, 18 SRV records

◼ OIT Active Directory domain controllers are allowed to update DNS.
TXT record is generated automatically when an active directory client
computer obtains a DHCP address and dynamically registers its
name with DNS

◼ Special SRV records automatically generated by Active Directory
Domain Controllers. For example for LDAP, Kerberos, KMS (Key
Management System)

Tanenbaum & Van Steen, Distributed Systems: Principles and Paradigms, 2e, (c) 2007 Prentice-Hall, Inc. All rights reserved. 0-13-239227-5

DNS: Domain Name Service (11)
Boise State DNS System

◼ TXT record is generated automatically when an active directory client
computer obtains a DHCP address and dynamically registers its
name with DNS

Example of DHCP record in DNS
active_earth-PC A 132.178.150.240
$TTL 1800; 30 minutes TXT "31631f3e2ac0f909bef3b57120a58c8a1f”

◼ Example of special records automatically generated by Domain
Controllers

$ORIGIN _tcp.main-campus._sites.dc._msdcs.boisestate.edu.

_kerberos SRV 0 100 88 drycreek1.boisestate.edu.

SRV 0 100 88 drycreek2.boisestate.edu.

SRV 0 100 88 DRYCREEK3.boisestate.edu.

_ldap SRV 0 100 389 drycreek1.boisestate.edu.

SRV 0 100 389 drycreek2.boisestate.edu.

SRV 0 100 389 DRYCREEK3.boisestate.edu.

Tanenbaum & Van Steen, Distributed Systems: Principles and Paradigms, 2e, (c) 2007 Prentice-Hall, Inc. All rights reserved. 0-13-239227-5

Attribute-based Naming

◼ As more information becomes available, it becomes important
to effectively search for entities. The user should be able to
search based just on some attributes

◼ Each entity has certain attributes. Each attribute says
something about the entity

◼ Users can search by constraining the attributes
◼ Attribute-based naming systems are also known as directory

services
◼ More general model is using resource description framework

(RDF). Resources are described as triplets consisting of a
subject, predicate and an object. E.g. (person, name, Alice)

Tanenbaum & Van Steen, Distributed Systems: Principles and Paradigms, 2e, (c) 2007 Prentice-Hall, Inc. All rights reserved. 0-13-239227-5

Hierarchical Implementations: LDAP (1)

◼ LDAP (Lightweight Directory Access Protocol). A simplified
protocol implementing the X.500 directory services. LDAP is
an application level protocol, implemented directly on top of
TCP

◼ Used by email programs for contact information but can also
be used to look for encryption certificates, pointers to printers
or other services, sharing passwords between services etc

◼ LDAP defines the protocol to be used between servers and
clients or servers and servers

◼ LDAP clients starts a LDAP session by contacting a LDAP
server on default TCP port 389

Tanenbaum & Van Steen, Distributed Systems: Principles and Paradigms, 2e, (c) 2007 Prentice-Hall, Inc. All rights reserved. 0-13-239227-5

Hierarchical Implementations: LDAP (3)
◼ Clients can send multiple requests and server can respond in

any order (with some exceptions)
◼ Common operations

◼ StartTLS — use the LDAPv3 Transport Layer Security (TLS) extension for a
secure connection

◼ Bind — authenticate and specify LDAP protocol version
◼ Search — search for and/or retrieve directory entries
◼ Compare — test if a named entry contains a given attribute value
◼ Add/Delete/Modify an entry
◼ Modify Distinguished Name (DN) — move or rename an entry
◼ Abandon — abort a previous request
◼ Extended Operation — generic operation used to define other operations
◼ Unbind — close the connection (not the inverse of Bind)

Tanenbaum & Van Steen, Distributed Systems: Principles and Paradigms, 2e, (c) 2007 Prentice-Hall, Inc. All rights reserved. 0-13-239227-5

Hierarchical Implementations: LDAP (4)

Figure 5-22. A simple example of an LDAP
directory entry using LDAP naming conventions.

Tanenbaum & Van Steen, Distributed Systems: Principles and Paradigms, 2e, (c) 2007 Prentice-Hall, Inc. All rights reserved. 0-13-239227-5

Hierarchical Implementations: LDAP (5)

Figure 5-23. (a) Part of a directory information tree.

Tanenbaum & Van Steen, Distributed Systems: Principles and Paradigms, 2e, (c) 2007 Prentice-Hall, Inc. All rights reserved. 0-13-239227-5

Hierarchical Implementations: LDAP (6)

Figure 5-23. (b) Two directory entries
having Host_Name as RDN.

Tanenbaum & Van Steen, Distributed Systems: Principles and Paradigms, 2e, (c) 2007 Prentice-Hall, Inc. All rights reserved. 0-13-239227-5

Hierarchical Implementations: LDAP (7)
◼ Collection of all directory entries in an LDAP directory service

is called a directory information base (DIB). Each record is
uniquely named and appears as a sequence of naming
attributes. These attributes are known as relative distinguished
names (RDN)

◼ The hierarchy of the collection of directory entries is known as
the directory information tree (DIT). This is a naming graph in
which each node represents a directory entry

◼ A large-scale DIT is usually partitioned across several directory
service agents (DSA). Clients are represented by directory
user agents (DUA), which are similar to a name resolver in
DNS

Tanenbaum & Van Steen, Distributed Systems: Principles and Paradigms, 2e, (c) 2007 Prentice-Hall, Inc. All rights reserved. 0-13-239227-5

Hierarchical Implementations: LDAP (8)
◼ Microsoft’s Active Directory allows a forest of LDAP domains!

To reduce search complexity, a global index server is searched
first

◼ Every tree in LDAP needs to be accessible at the root (domain
controller in Active Directory terminology). This can be known
under DNS with a SRV record

◼ UDDI (Universal Directory and Discovery Implementation) is
another example of structured naming system

	DISTRIBUTED SYSTEMS Principles and Paradigms Second Edition ANDREW S. TANENBAUM MAARTEN VAN STEEN Chapter 5 Naming
	Slide 2
	Overview
	Names, Identifiers and Addresses (1)
	Names, Identifiers and Addresses (2)
	Slide 6
	Types of Naming Systems
	Flat Naming Systems
	Forwarding Pointers (1)
	Slide 10
	Forwarding Pointers (2)‏
	Slide 12
	Forwarding Pointers (3)‏
	Forwarding Pointers (4)
	Locating Mobile Entities
	Home-Based Approach
	Distributed Hash Tables (1)
	Slide 18
	Distributed Hash Tables (2)
	Distributed Hash Tables (3) General Mechanism
	Distributed Hash Tables (4)
	Distributed Hash Tables (5)
	Hierarchical Approaches (1)‏
	Hierarchical Approaches (2)‏
	Hierarchical Approaches (3)‏
	Hierarchical Approaches (4)‏
	Hierarchical Approaches (5)‏
	Structured Naming
	Name Spaces (1)‏
	Name Resolution
	Linking and Mounting (1)‏
	Linking and Mounting (2)‏
	Linking and Mounting (3)‏
	Name Space Implementation
	Name Space Distribution (1)‏
	Name Space Distribution (2)‏
	Implementation of Name Resolution (1)‏
	Implementation of Name Resolution (2)‏
	Implementation of Name Resolution (3)
	Implementation of Name Resolution (4)‏
	Implementation of Name Resolution (5)
	DNS: Domain Name Service (1)‏
	DNS:Domain Name Service (2)
	DNS:Domain Name Service (3)‏
	DNS: Domain Name Service (4)
	DNS: Domain Name Service (5)
	DNS: Domain Name Service (6)
	DNS: Domain Name Service (7)
	DNS: Domain Name Service (8)‏
	DNS: Domain Name Service (9)
	DNS: Domain Name Service (10)
	DNS: Domain Name Service (10) Boise State DNS System
	DNS: Domain Name Service (11) Boise State DNS System
	Attribute-based Naming
	Hierarchical Implementations: LDAP (1)
	Hierarchical Implementations: LDAP (3)
	Hierarchical Implementations: LDAP (4)‏
	Hierarchical Implementations: LDAP (5)‏
	Hierarchical Implementations: LDAP (6)‏
	Hierarchical Implementations: LDAP (7)
	Hierarchical Implementations: LDAP (8)

