
Virtual
Memory

1/26

Virtual Memory

Virtual
Memory

2/26

Learning Objectives

I Understand the concept of virtual memory
I Understand the concepts of pages, page frames, page

faults, virtual address translation
I Understand the design of page tables
I Understand various page replacement algorithms
I Understand the impact of page reference streams,

thrashing, and working sets on program behavior

Virtual
Memory

3/26

Virtual Memory Techniques

Two methods used for implementing virtual memory:
I Paging. The virtual address space is one-dimensional and

is broken up into units of one page each. All pages are of
the same size. The programmer does not have to be aware
of the pages.

I Segmentation. The virtual address space is two
dimensional: <segment, offset>. Segments can be defined
explicitly by the programmer or implicitly by program
semantics. Segments are variable sized.

Virtual
Memory

4/26

Paging Concepts

I Pages and Page Frames.
I Mapping virtual addresses to physical addresses. The role

of MMUs (Memory Management Unit).
I Page Faults: Handled via the interrupt system.

Instructions may have to be undone and repeated.
I Page Table design.

I page table in hardware registers.
I page table in memory.
I multi-level page table.

Virtual
Memory

5/26

A Simple Example

A detailed simple example of virtual memory. Show the
mapping from virtual to physical address space. Explain the
functionality of the Memory Management Unit (MMU).

Physical memory = 32K
Virtual memory = 64K
page size = 4K

Number of page frames = 8
Number of pages = 16
Number of bits in physical address = 15
Number of bits in virtual address = 16

Virtual
Memory

6/26

Simple example (contd)

Space

 Space

Physical Address

1

12

13

15

14

11

10

3

2

0

4

7

8

9

6

5

[12k, 16k)

[16k, 20k)

[20k, 24k)

[8k, 12k)

[4k, 8k)

[60k, 64k)

X

X

2

1

6

0

3

0

1

2

3

4

5

6

7

[0, 4k) [0, 4k)

[4k, 8k)

[8k, 12k)

[12k, 16k)

[16k, 20k)

[20k, 24k)

[24k, 28k)

[28k, 32k)

Virtual Address

absent pages

Sample virtual to physical translations

mov r1, 20500 −−−> mov r1, 12308

mov r1, 0 −−−> mov r1, 8192

Virtual
Memory

7/26

Simple example (contd)

12−bit page offset4−bit page#

0 0 11 0 0 0 010 0 0 0 0 0 1

. . .

1

1

1

0

1

1

0−−−

0 1 1 0 0 0 0 0 0 0 1 0 1 0 00 1 1

1 1 0

0 0 1

0 1 0

0 0 0

−−−

page table

present/absent

bit

20500

12308

0

Virtual to Physical Address Translation

15−bit physical address

16−bit virtual address

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

Virtual
Memory

8/26

Page Table Design Issues

virtual address space page size number of pages
32 bits 4K 220 (about 1 million entries)
64 bits 4K 252 (about 4500 trillion entries!)

I Page tables can be extremely large..it may not be feasible to store
the entire page table!

I The mapping from virtual address to physical address using the
page table must be fast (since it is happening on every memory
reference)

I Each process needs its own page table.

Virtual
Memory

9/26

A Range of Page Table Designs

I Simplest Design. Page table consists of an array of
hardware registers, one per page. The registers are loaded
when the process starts so no memory references are
needed later. High performance. Context-switch, however,
can be expensive.

I Cheapest Design. Keep entire page table in memory.
Need just one register to point to the start of the page
table. Slow performance. Context switching is fast.

I Multi-level Page Tables. Split the bits for the page
number in the virtual address into multiple fields (usually
three or four). The page table is then arranged as a
multi-way tree with each node in the tree being a small
page table. Far less memory requirements. Combined with
a Translation Lookaside Buffer (a cache for virtual to
physical address translations), this design gives good
performance.

Virtual
Memory

10/26

.

.

.

.

.

.

.

.

.

.

.

.
12page size = 4K = 2 words

number of pages = 2
20

.

.

.

Multilevel Page Tables

top−level
page table

0

1

2 second−level
page tables

pages
pages

part1 part2 offset

10 bits 12 bits10 bits

32−bit virtual address

pages

part2

part1

1

2

1023

0

1023

1023

0

1

2

2

0

1

1023

stack

heap

data

text

Virtual
Memory

11/26

Examples of Paging

I VAX. (2 level virtual page tables) page size=512 bytes, 21
bit virtual page number, 2 bits for memory partitions (00:
User, 01: User stack, 10: System, 11: Reserved).
(Introduced the concepts of associative memory for
implementing a Translation Look-aside Buffer(TLB) to
improve the performance).

I SUN SPARC. (3 level page tables) Page size = 4K, The
32-bit virtual address is broken up into four fields of sizes
8,6,6,12, with the last field being the offset into the page.

I MIPS R2000. (zero level paging) (32 bit address, 4K page
size).

Virtual
Memory

12/26

Inverted Page Tables

I If number of pages in the virtual address space >>
number of page frames, then it is better to keep track of
page frames and which pages are mapped to it rather than
a per process page table.

I An inverted page table is always used with an associative
memory.

Virtual
Memory

13/26

Page Fault Handling

4’

5’

6

7

USER space KERNEL Space

411/21 3 5

8910

reschedule user
process to run

rollback
instruction

update page table
page transfer complete,

schedule transfer
of page we need

let another process

to wait
run since we have

page fault in user
process

determine virtual address
that caused the fault

check validity

send kill signal
to process

found a dirty
invalid

find a page frame

page frame

mark page
frame busy

schedule a disk transfer

context switch

reference

found a clean

switch to kernel
save CPU state
hardware trap

restore state

interrupt

interrupt

page frame

valid
reference

Virtual
Memory

14/26

Paging Algorithms

When should a page be fetched, which page (if any) should be
replaced, and where should the new page be placed?
Static paging assumes that the amount of memory requested
by a process is fixed at the start and does not change.
Dynamic paging algorithms adjust the amount of memory
allocated based on the behavior of the program.

Paging Concepts. Page reference stream, demand paging, page
replacement algorithms, thrashing.

Measuring performance of virtual memory subsystem: vmstat
utility on Linux,

Virtual
Memory

15/26

Page Replacement Algorithms

I Random Replacement.
I Belady’s Optimal Algorithm.
I Least Recently Used (LRU).
I Least Frequently Used (LFU).
I First In First Out (FIFO).

See
http://en.wikipedia.org/wiki/Page_replacement_algorithm
for more details.

http://en.wikipedia.org/wiki/Page_replacement_algorithm

Virtual
Memory

16/26

Implementation of the LRU PRA

I Exact implementation requires keeping track of the time
when the page was last referenced. This is expensive.
Instead, approximate schemes are used.

I Use one bit per page which is periodically set to zero.
Each time the page is read from or written to, hardware
automatically sets the reference bit to one. Inexpensive,
though crude, implementation of LRU scheme.

I Use a shift register to keep track of reference information
per page. The register contents are shifted to the right
periodically. On each reference the most significant bit of
the register is set.

Virtual
Memory

17/26

Dynamic Paging Algorithms

I Each program usually uses a working set of pages.
Ensuring that these are in the memory minimizes the
number of page faults. Allocating less pages than the size
of this set causes many page faults. On the other hand,
allocating a lot more pages does not reduce the number of
page faults significantly.

I The working set of pages for a process changes over its
lifetime. The hard part is to keep track of it and adjust
the memory allocation accordingly.

Virtual
Memory

18/26

Working Set Clock Algorithm(s)

I Clock Algorithm. The page frames of all the processes are
logically arranged in a circular list. Each page frame
contains a reference bit (used in a way similar to in the
LRU algorithm). Behaves like a global LRU algorithm.

I WSClock Algorithm. Extension of the basic Clock
algorithm by approximating a window size. Each page
frame has an additional variable called lastref, which is set
to the virtual time for the process currently using it. To
find a page frame the algorithm uses the following
equation:

Timepi −lastref[frame] > τ,

where τ is the window size and Timepi is the virtual time
for process pi .

Virtual
Memory

19/26

Effect of program structure on paging

See example virtual-memory/page-fault-test.c for significant difference
in execution time based on row-major versus column-major access of a
two-dimensional array. Abbreviated version shown below.

#include <unistd.h>
// make size big enough to cause page faults
#define SIZE 4097
int A[SIZE][SIZE];

void main(void)
{

int i,j;
printf(" page size = %d\n", sysconf(_SC_PAGESIZE));

for (i=0; i<SIZE; i++)
for (j=0; j<SIZE; j++)

A[i][j] = 0;

for (j=0; j<SIZE; j++)
for (i=0; i<SIZE; i++)

A[i][j] = 0;
}

Virtual
Memory

20/26

Segmentation

I Segmentation provides a two-dimensional virtual address
space. A program can consist of several independent
segments, each of which can grow or shrink independently.

I Many systems implement segmentation and paging
simultaneously by paging the segments.

Virtual
Memory

21/26

Virtual
Memory

22/26

Intel x86 Segmentation

I Uses segmentation combined with paging for memory management.
I Maximum number of segments per process is 16K, and each segment

can be as large as 4 GB. The page size is 4KB.
I The logical address space of a process is divided into two partitions.

The first partition consists of up to 8K segments that are private to
the process. The second partition consists of up to 8K segments that
are shared among all processes.

I The local descriptor table (LDT) keeps track of the private
segments. The global descriptor table (GDT) keeps track of the
shared segments. Each entry in these tables is 8 bytes long, with
detailed information about a particular segment including the base
location and length of the segment.

I The logical address is a pair (selector, offset), where the selector is a
16-bit number, and the offset is a 32-bit number.

s g p
13 1 2

Virtual
Memory

23/26

Intel x86 Segmentation (continued)

I The machine has six segment registers, allowing six segments to be
addressed at any one time by a process. It has six 8-byte registers to
hold the corresponding descriptors from either the LDT or the GDT.

I The logical segment address is 48 bits: (16-bit segment, 32-bit
segment-offset). The base and limit information about the segment in
question is used to generate a 32-bit linear address. First the limit is
checked for the validity of the address. Then the base is added to the
segment-offset, resulting a 32-bit linear address (that is still virtual).
In the the next step, the 32-bit linear address is converted into a
physical address using paging as described below.

I Page size of 4KB. A two-level paging scheme: the first part is 10 bits,
the second part is 10 bits and the least significant 12 bits are for the
offset within a page.

10 bits 10 bits 12 bits

page number offset

Virtual
Memory

24/26

Intel x86 Translation

Diagram from Operating System Concepts, 6th Ed. by Silberschatz and Galvin

Virtual
Memory

25/26

64-bit extensions to 32-bit x86 Architecture

I Initiated by AMD and named as x86-64 (later AMD64).
Intel adopted it later and named it EM64T (renamed to
Intel 64).

I Current features:
I 64-bit registers and pointers.
I 48-bit virtual address but can be extended in future.
I 40-bit physical address space. Newest version is 48-bit

physical address space but can be extended to 52-bits.
I Legacy 32-bit code can run without recompilation or

performance hit. But converting to 64-bit does enhance
performance.

I PAE (Physical Address Extensions) mode for legacy
software has increased from 36 bits to 52-bits.

I Segmentation support only in 32-bit legacy mode.
I Page size can be 4KB, 2 MB or 1GB.
I Four-level page table for 48-bit addresses. Each level is

9-bits and page offset is 12-bits (or more for larger page
sizes)

Virtual
Memory

26/26

Paging versus Segmentation

Paging Segmentation
Number of address spaces 1 >2
Total address space > physical space Yes Yes
Has separate data, text, stack segments No Yes
Programmer awareness No Yes
Easy to accommodate fluctuating tables No Yes
Easy to share memory No Yes

