Process
Management

Process Management

S A



Learning Objectives

Process
Management

» Understand how executables are structured, loaded and
run

» Understand the memory hierarchy as related to processes

» Explain the process abstraction and its implementation in
the Operating System

» Understand process state using state diagrams



System View of a Process

Process
Management

The process manager implements the process abstraction. It
covers the following areas:

» Scheduling of processes on the CPU(s)
» Synchronization mechanisms for processes
» Responsible for dealing with deadlocks among processes

» Partially responsible for protection and security



Process Manager Overview

Process

Management
Program

Abstract Computing Environment ‘

. File | Deadlock || Process
' Manager | Protection Description

’ Synchronization I

Device

Manager

Memory |

Manager | Scheduler'

Resource
Manager

Devices I’ Memory I ’ CPU I Other H/'W




Process Address Space

Process
Management

compile/link

. . load
program & libraries executable 225 process

» A program is a set of source code modules that reference
each other and reference a collection of library object
modules

» The address space is a set of linearly ordered locations
used by the process to reference program text, data,
operating system services, resources etc

» A program image defines the set of all primary memory
addresses a process uses



Generating the Address Space

Process
Management

» Compiling and linking produces an absolute program
(a.out).

» The loader maps the address space to the allocated
primary memory addresses and sets the PC (program
counter) to the first executable instruction (a.k.a. main
entry point).



Process
Management

Source
M

odules

il_‘

Translator | [,Relocatablg
— Modules
; : Absolute | prj M
Link Editor rimary Memory
ﬁ—’ Program

Loader ' Executable
Program




The Structure of Executable Files

Process
Management

» The structure of an executable file is dependent upon the
operating system

» The compiler/linker needs to produce a file in one of the
formats understood by the operating system to be
executable

» Older standard executable formats from Unix: COFF
(Common Object File Format) and a.out

» Linux and most modern Unixes use the ELF (Executable
and Linkable Format) format

» MS Windows uses the PE (Portable Executable, derived
from the COFF format) format

» MAC OS X uses the Mach-O format (derived from the
a.out format)



Process
Management

The ELF Executable format

> Flexible and extensible, not bound to any particular processor or

architecture

Each ELF file is made up of one ELF header that describes the
layout of the file. Then follow physical (or program) headers that
describe the program segments. These include the text segment
(compiled code), read only data, data segment (initialized global
and static variables) and others.

The executable image on the disk does not set aside space for
uninitialized data segment variables. The uninitialized part of the
data segment is set to zero after being loaded into memory. The
section that stores these types of variables is called the BSS
(Block Started by a Symbol) section.

» Example: test-bss.c

> What is the advantage of having a BSS section? -

ELF uses position independent code and a global offset table,
which trades off execution time against memory usage in favor of
the latter


https://github.com/BoiseState/CS453-resources/blob/master/examples/process-management/test-bss.c

Process
Management

e_ident
e_entry
e_phoff
e_phentsize
e_phnum

p_type
p_offset
p_vaddr
p_filesz
p_memsz
p_flags

p_type
p_offset
p_vaddr
p_filesz
p_memsz
p_flags

Code

Data

'E'LF
0x8048090
52

32

2

PT_LOAD

0

0x8048000
68532

68532

PF_R, PF_X
PT_LOAD
68536
0x8059BB8

ELF Executable Image (statically linked file)



ELF layout

Process

Management » How to look at executables: one way is to use the dump
command od It has various options to examine the data in hex,
octal, ASCII etc. Under KDE there is a utility called okteta,
which is a nice GUI hex editor

> Use the utility readelf to peek into the structure of an ELF file.

» Look at the header file /usr/include/linux/elf.h for more
details of the ELF executable format.

> See example process-management/display-elf-headers.c
for a program that reads headers from an ELF executable file.

» Dynamically linked executables have more segments due to
linking with libraries.



Process
Management

Microsoft's Portable Executable (PE) Format

Based on the COFF (Common Object File Format from
Unix). Retains the old MZ header from MS-DOS to remain
backwards compatible. Works on all Windows operating
systems since NT 3.1

Consists of an MS-DOS MZ header, followed by a real-mode
stub program, the PE file signature, the PE file header, the
PE optional header, all of the section headers, and finally, all
of the section bodies

The PE file format has eleven predefined sections, as is
common to applications for Windows API, but each
application can define its own unique sections for code and
data

The .debug predefined section also has the capability of
being stripped from the file into a separate debug file. If so, a
special debug header is used to parse the debug file, and a
flag is specified in the PE file header to indicate that the
debug data has been stripped



Microsoft's Portable Executable Format Layout

PE File Format

Process
MS-DOS
MZ Header

Management

MS-DOS Red-Mode
Stub Program

PEFile Signature

PE File
Header

PE File
Optional Header

text Section Header

bss Section Header

rdata Section Header

debug Section Header

text section

bss Section

rdata Section

debug section

http://www.csn.ul.ie/"caolan/publink/winresdump/winresdump/doc/pefile.html

Source for image:



Microsoft's Portable Executable (PE) Format

Process

Management » The .NET framework uses an extended PE file format. There is
another extension known as PE32+ (or PE+) for 64-bit systems
as well as one for the embedded Windows CE system

» PE files use a preferred base address and all addresses generated
by the compiler/linker are fixed ahead of time to speed up
execution. However, if the preferred base address isn't available,
then an expensive “rebasing” operation must be done that can
result in having to copy shared libraries and causing a loss of
memory efficiency



Process
Management

Consistency in the Address Space

Memory Hierarchy:
Registers <~ Primary Memory < Secondary Memory.

Registers <— on-chip Cache < off-chip Cache < Primary Memory <
Secondary Memory

The memory hierarchy is consistent for locations that contain
instructions (since programs are not allowed to be self-modifying).
But the data values are not consistent unless the programmer
explicitly makes them consistent

For a given variable, we have its value in a register (Mg,), its
value in the primary memory (Mp,), and its value in secondary
memory (Ms,)

What happens when a CPU is switched to another process?
What happens when memory manager deallocates some of the

Lap )
space used by a process? &
Linux system calls to synchronize memory images with disk images:
fdatasync - synchronize a file's in-core data with that on disk

sync - synchronize a file’s complete in-core state with that on disk



Process
Management

The Process Descriptor

The process descriptor is the primary data structure used to
keep track of the status of a process and the specific
environment that is associated with a process. It contains the
following types of information:

>

>

>

process state (whether it is blocked or ready)
memory state

current processor register contents

pointer to the stack for the process

resources (those allocated and those waiting for)

other information



Process
Management

Process Descriptor

» A process descriptor is allocated when process is created

and deallocated when a process dies. Usually there is a
limit on the number of process descriptors in an operating
system.

Even though the process manager is the one primarily
interacting with the process descriptor it is also queried
and some fields are modified by other parts of the
operating system

How to find the process descriptor in Linux source code?
Start with the source code for fork() system call (in the file
kernel/fork.c) The obvious candidate is the structure
task_struct, which is found in the header file
include/linux/sched.h in the kernel source.

(Use grep "task_struct {" *.h in the directory
include/linux in the kernel source code)



Linux Processes

Process In Linux terminology, they are called tasks. Linux has a list of process

Management

descriptors (which are of type task_struct defined in sched.h in your

Linux kernel source tree)

>

The maximum number of threads/processes allowed is dependent
upon the amount of memory in the system. Check
/proc/sys/kernel/threads-max for the current limit.

By writing to that file, the limit can be changed on the fly (by the
superuser). Or set it in /etc/sysctl.conf to set it at bootup time.
There is also a limit on max pid to be 32768 (2!°) to make 2.6 and
newer kernels compatible with programs written for the older kernels.
This limit can be seen in /proc/sys/kernel/pid_max

This can be overwritten to any value up to 222 (about 4 million). For
example:

echo 1000000 > /proc/sys/kernel/pid_max

To do it permanently, add

kernel.pid_max = 1000000

to the /etc/sysctl.conf file so it gets set at bootup time.

Look at include/linux/threads.h in kernel source code to see the
limits.



Linux Process Descriptor

Process Browse live in the file include/linux/sched.h in the kernel source...some
WEiEgamasi snippets given below.

struct task_struct {
volatile long state; /* -1 unrunnable, O runnable, >0 stopped */
void *stack;
atomic_t usage;
unsigned int flags; /* per process flags, defined below */
unsigned int ptrace;

int prio, static_prio, normal_prio;
unsigned int rt_priority;

const struct sched_class *sched_class;
struct sched_entity se;

struct sched_rt_entity rt;

struct mm_struct *mm, *active_mm;

int exit_state;

int exit_code, exit_signal;

int pdeath_signal; /* The signal sent when the parent dies */

pid_t pid;
pid_t tgid;



Linux Process Descriptor (contd.)

Process

/* pointers to (original) parent process, youngest child, younger sibling,
Management

* older sibling, respectively. (p->father can be replaced with p->real_parent->pid)
*/

struct task_struct *real_parent; /# real parent process */

struct task_struct *parent; /* recipient of SIGCHLD, wait4() reports */

/* children/sibling forms the list of my natural children */

struct list_head children; /* list of my children */

struct list_head sibling; /* linkage in my parent's children list */

struct task_struct *group_leader; /* threadgroup leader */

/* PID/PID hash table linkage. */
struct pid_link pids[PIDTYPE_MAX];
struct list_head thread_group;

cputime_t utime, stime, utimescaled, stimescaled;
cputime_t gtime;

/* CPU-specific state of this task */
struct thread_struct thread;
/* filesystem information */
struct fs_struct *fs;
* open file information */
struct files_struct *files;
/* signal handlers */
struct signal_struct *signal;
struct sighand_struct *sighand;
sigset_t blocked, real_blocked;
sigset_t saved_sigmask; /* restored if set_restore_sigmask() was used */
struct sigpending pending;

~



Data Structures for Processes (1)

Pliogzss What data structure(s) are used to keep track of the processes?

Management
> Linux kernel: The process descriptors are kept in circular
linked lists, a binarization of a general tree data structure
and a hash table simultaneously!

L ik A
Pair
Share

- W

> In-class Exercise. Sketch a sample declaration of a
general tree using an array of child pointers (with MAX, say
100, children per node).

» In-class Exercise. Sketch a sample declaration of
binarization of a general tree with the
leftmost-child-right-sibling representation.

» In-class Exercise. How much space is wasted (as null
pointers) in a n node tree represented in the above two
layouts?



Data Structures for Processes (2)

Process
Management

> The linked list implementation in the kernel uses the
following node (check include/linux/types.h and
include/linux/list.h):

struct list_head {
struct list_head *next, *prev;

};

» The linked lists are circular, so there is no head or tail
node. We can traverse the whole list starting from any
node.



Process
Management

MS Windows Processes

Processes and Threads are kept track of in separate data
structures.

Each windows process is represented by a executive
process block. It contains pointers to other structures,
including executive thread blocks. Part of the information
is stored in the process environment block so it can be
accessed in user space

The windows subsystem process (Csrss: client/server run
time subsystem) maintains a parallel data structure for
each process that is executing a Windows program.The
kernel-mode part of the Windows subsystem (Win32k.sys)
also maintains a per-process data structure

Compare with the Linux approach of representing
processes and threads both with a task structure



Process
Management

Process

Executive
process
block

Process address space

System address space

*" Windows process block ‘

*" Handle table

Executive

thread

MS Windows process/thread data structures

environment

Thread
environment
block

block




Process
Management

MS Windows process tree

SN X

Process
#18ystem Idle Process
=TISystem
Interrupts
Tismss.exe
Tesrss.exe
= Elcsrss.exe
mconhost.exe
= conhostexe
& Elwininitexe
©¥iservices.exe
“Jlsass.exe
#ilsm.exe
#Iwinlogon.exe
= sexplorer.exe
@vmtoolsd.exe
asidebar.exe
ONENOTEM.EXE
msseces.exe
= 2 procexp.exe
2 procexpbd.exe
Edevenv.exe
=@ chrome.exe
@ chrome.exe
@ chrome.exe
= & powershell.exe
Tgvim.exe
Tagvim.exe
©VCDDaemon.exe
@iTunesHelper.exe
FUAexe

CPU_Private Bytes

76.76
226
6.98

<0.01
0.32

183
468
0.01

283

0.01

<0.01

<001
0.01

0K
128K
0K
448K
2672K
11.432K
1,164K
2428K
1496 K
5280 K
5108K
2516K
2792K
60,788 K
16,796 K
16,320K
1,044 K
6,168K
2280K
14304K
96,984 K
37,096 K
17,756 K
22516K
40,228K
2528K
2532K
1536 K
3,700 K
34,408 K

Working Set
24K
772K
0K
1,116K
4824K
7,792K
3244K
9,204 K
4328K
9,072K
11,972K
4212K
7.212K
88392K
26,868 K
35328K

32516K
138,140K.
66,304 K
13520K;
22,184 K
48,660 K
10528K,
10548 K.
5,720K
11540 K.
37,292K

PID Description
0

4
n/a Hardware Interrupts and DPCs
360
428
468

2652 Console Window Host

3428 Console Window Host
476

576
584 Local Security Authority Process
592

524
2220 Windows Explorer

2992 VMware Tools Core Service

2816 Windows Deskiop Gadgets

2852 Microsoft Ofice OneNote Quick L.
3172 Microsoft Security Client User Inte...
3012 Sysinternals Process Explorer
4320 Sysinternals Process Explorer
2072 Microsoft Visual Studio 2012

3488 Google Chrome

3464 Google Chrome

4828 Google Chrome:

2660 Windows PowerShell

3396 Vi Improved - A Text Editor

1144 Vi Improved - A Text Editor

3632 Virtual CloneDrive Daemon

3640 iTunesHelper

3820

Company Name

Microsoft Corporation
Microsoft Corporation

Microsoft Corporation

Microsoft Corporation
VMware, Inc.

Microsoft Corporation

Microsoft Corporation

Microsoft Corporation
Sysinternals - www.sysinternals.
Sysinternals - www.sysinternals.
Microsoft Corporation

Google Inc.

Google Inc.

Google Inc.

Microsoft Corporation

Vim Developers

Vim Developers

Elaborate Bytes AG

Apple Inc.

[CPU Usage 2224% Commit Charge: 1829% Processes: 59 Physical Usage: 420%

Screenshot of procexp program from Sysinternals tools.



Process State Diagram

Process
Management

> A process state diagram is used to characterize the
behavior of a process

> A process may be ready, running or blocked. How does the
process state change?

> The ready and blocked states can be refined to Active and
Suspended



Simple Process State Diagram

Process
Management

request

Done

schedule

request

Start

Blocked Ready



L o A
Pair
Share

In-class Exercise o w

Process Consider the following process state transition diagram:
Management Rlll’l[liﬂg

Done

Q Start
4

Blocked Ready
For each of the transitions give an example of a specific event that can
cause that transition.

1)
(2
(3)
4)



Extended Process State Diagram

Process Runni ng

Management

request

suspend

schedule

suspend

Start
ready Suspended

activate

1s9nbe.

readyActive

allocate allocate

activate
blockedActive blockedSuspended



L o A
Pair
Share

In-class Exercise o w

Process
Management

» Give two specific examples of how a process could be
involuntarily removed from the CPU.

» Give two specific examples of how a process could
voluntarily give up the CPU.

> Give a specific example of how a process could move from
a running state to the readySuspended state.



Linux Process State Diagram

Process start

Management

TASK_INTERRUPTIBLE TASK_UNINTERRUPTIBLE

waiting

) wakeup
zombie

EXIT_ZOMBIE

ready to run
TASK_RUNNING

wakeup

stopped

TASK_STOPPED

See the file include/linux/sched.h for the Linux process states.



MS Windows Thread/Process State Diagram

Process
Management

Init (0) Ready (1)

preemption
quantum end

preempt

Running (2

Deferred
ready(7)

voluntary
switch
Waiting (5)

Gate waiting (8) Teripaall)



Process
Management

MS Windows process states

Init (0): Used internally while the thread is being created

Ready (1): A thread in the ready state is waiting to
execute

Running (2): Running on a processor until the quantum
ends, it is preempted, it terminates, it yields or it
voluntarily enters the wait state

Standby(3): A thread in the standby state has been
selected to run on a particular processor. Only one thread
can be in a standby state for each processor on the
system. Threads can be preempted from this state

Terminated (4): In the terminated state, the executive
thread block might or might not be deallocated depending
on the policy that is set



Process
Management

MS Windows process states (contd.)

Waiting (5): A thread can enter the waiting state in several
ways: it can voluntarily wait for an object to synchronize its
execution, the operating system can wait on its behalf (such as
for paging 1/0), or it can be suspended by an external entity
Transition (6): A thread is ready for execution but its kernel
stack is paged out of memory

Deferred Ready (7): Threads that have been selected to run on
a specific processor but have not yet been scheduled. This is so
that the kernel can minimize the amount of time the system wide
lock on the scheduling database is held

Gate Waiting (8): When thread does a wait on a gate
dispatcher object (separate from the waiting state). Because
gates don't use the dispatcher lock, but a per object lock, the
kernel needs to be able to distinguish it if it has to break the lock



Resources

Process

YETErent A process manager also manages resources used by processes.

> A resource is anything that can block a process from
executing. Examples include: memory, messages, input
data, disks, tapes, files etc

» A resource that can be allocated and must be returned
after the process has finished are called reusable resources.
These kind of resources are fixed in number. What if a
process does not release reusable resources?

» A resource that is never released is called a consumable
resource. T hese kind of resources are unbounded

» Different resource allocation strategies. Give more
responsibilities to client processes. E.g. user level threads,
IBM virtual machine operating system, virtual machine
servers, client-server operating systems and microkernels



