
CS 453:
Operating
Systems:

Introduction

1/20

CS 453: Operating Systems: Introduction



CS 453:
Operating
Systems:

Introduction

2/20

Learning Objectives

I What is an Operating System (OS) and why is it needed?
I Understand the high-level organization of an OS.
I Introduce the concepts of a kernel, privilege levels and

system calls used to implement an OS.
I Introduce Monolithic versus Microkernel design for an OS.
I How to observe the behavior of an OS.



CS 453:
Operating
Systems:

Introduction

3/20

Introduction

I An Operating System is a system software that acts as an
intermediary between:

I user and resources (could be hardware or abstract)
I application software and resources
I other system software and resources

I Application software versus System software
I An operating system has two major functions:

I resource abstraction
I resource sharing



CS 453:
Operating
Systems:

Introduction

4/20

Resource Abstraction

I provide abstract models of hardware components
I a good abstraction (or interface) is general across

resources, yet easy to use
I abstraction can be carried out at several levels



CS 453:
Operating
Systems:

Introduction

5/20

Resource Sharing

I Sharing can be of two types:
Space-multiplexed : Resource can be divided into two or

more units. e.g. memory, disks
Time-multiplexed : Resource must be given exclusively.

e.g. processor
I Should prevent unauthorized sharing while still allowing

authorized sharing
I Resource isolation relies on the operating system being

trustworthy. The operating system, in turn, relies on
hardware for protection.



CS 453:
Operating
Systems:

Introduction

6/20

Logical Organization of an Operating System



CS 453:
Operating
Systems:

Introduction

7/20

The Big Picture

Graphical
User
Interfaces

Compilers,

Linker/Loader

Shells

Operating System

Hardware

IDEs

memory manager file manager

device managerprocess manager 

ls, login, passwd,
awk, grep etc

Assembler,
Useful Commands

Application 
Programs



CS 453:
Operating
Systems:

Introduction

8/20

Why do we need an Operating System?

I Can your computer run without an Operating System?

I What would it take to use such a computer?



CS 453:
Operating
Systems:

Introduction

9/20

Linux Source Code

I Download the latest stable Linux source code from the
“The Linux Kernel Archives.” Or examine the code on
onyx at ~amit/tmp/linux-4.9.3

I How many files does it have? How many lines of code
does it have?

I Can you identify folders corresponding to the major parts
of the Operating System such as the kernel, memory
management, process management, file system, device
drivers.

~amit/tmp/linux-4.9.3


CS 453:
Operating
Systems:

Introduction

10/20

Implementation Strategies/Issues

I The Operating System kernel as the trusted software
module.

I Hardware provides supervisor mode versus user mode to
provide protection.

I How do applications and users request services from the
operating system?



CS 453:
Operating
Systems:

Introduction

11/20

Privilege Levels

The mode bit is used to determine the privilege level by the
hardware. The hardware must support at least two separate
modes.

I Supervisor mode.
I All machine instructions are available.
I All memory addresses are available.

I User mode.
I A subset of the instructions are available. Typically I/O

instructions and instructions that change the mode bit are
not available. Using those instructions causes the process
to fault and stop.

I A subset of the memory addresses are available.



CS 453:
Operating
Systems:

Introduction

12/20

Kernel

I The kernel is the trusted part of the operating system. It
runs in the supervisor mode.

I The trap machine instruction is used to switch from user
mode to the supervisor mode. It is used to implement
system calls.

I An alternative to trap instruction is using messages to get
service from the operating system.



CS 453:
Operating
Systems:

Introduction

13/20



CS 453:
Operating
Systems:

Introduction

14/20



CS 453:
Operating
Systems:

Introduction

15/20

In-class Exercise

I In particular, see if you can locate the system call branch
table in the Linux kernel code. Hint: It will be architecture
specific. Look for kernel code specific to an architecture,
such as Intel x86. Use find and grep -r to help you!



CS 453:
Operating
Systems:

Introduction

16/20

Operating System Kernel Design Options

I Monolithic. There is a single large kernel that contains most of
the operating system code. The device drivers can be separate.

I UNIX was conventionally a monolithic design. Linux started as a
monolithic kernel but with the increasing use of modules, the
kernel can be made smaller and less monolithic.

I Microkernel. The kernel is very small and only implements some
fundamental things like processes and scheduling. The operating
system then consists of several subsystems along with the kernel.

I MACH operating system is an example of a microkernel design.
MS Windows NT was based on MACH. In turn MS Windows
2000, XP, Vista, 7, 8, and 10 are based on the NT design although
they have moved somewhat away from the microkernel approach
for performance reasons.

For more on the debate of monolithic versus microkernel approach, see
the link on the class website under the Links section titled
“Microkernel versus Monolithic kernel.”



CS 453:
Operating
Systems:

Introduction

17/20

Typical Monolithic Kernel Organization



CS 453:
Operating
Systems:

Introduction

18/20

Typical Microkernel Organization



CS 453:
Operating
Systems:

Introduction

19/20

Factors in Operating System Design

I Performance
I Protection and Security
I Correctness
I Maintainability
I Commercial factors
I Standards and open systems. For example:

I IEEE POSIX.1 open systems standard: specifies a set of
system calls and their semantics that must be supported
by a compliant operating system. (official standard)

I TCP/IP: Internet network protocol. Supported by most
operating systems. (de-facto standard)



CS 453:
Operating
Systems:

Introduction

20/20

Observing Operating System Behavior

I For Linux: Use ps, top or KDE System Guard ksysguard for user
level tools. These tools are all based on the /proc virtual
filesystem.

I The /proc virtual filesystem under Linux provides a window into
the internals of the operating system. For example:

I /proc/cpuinfo gives us the details of the CPU in the system.
I The file /proc/meminfo gives us the details of the memory in the

system.
I The file /proc/stat gives statistics about the system such as how

long the system has been up, number of processes that have been
created since the system was booted up etc.

I The proc filesystem also has a folder for each process that is
running. The folder contains relevant information that the OS
keeps for that process.

See man proc for more details on what all information is available.

I For Microsoft Windows: Use the Task Manager. For more
detailed observations, see tools from
http://www.sysinternals.com.

http://www.sysinternals.com

