
Files and
Processes
(review)

1/61

Files and Processes (review)

Files and
Processes
(review)

2/61

Learning Objectives

I Review of files in standard C versus using system call
interface for files

I Review of buffering concepts
I Review of process memory model
I Review of bootup sequence in Linux and Microsoft

Windows
I Review of basic system calls under Linux: fork, exec,

wait, exit, sleep, alarm, kill, signal
I Review of similar basic system calls under MS Windows

Files and
Processes
(review)

3/61

Files

I Recall how we write a file copy program in standard C.
include <stdio .h>
FILE *fopen(const char *path , const char *mode);
size_t fread(void *ptr , size_t size , size_t nmemb , FILE * stream);
size_t fwrite (const void *ptr , size_t size , size_t nmemb , FILE * stream);
int fclose (FILE *fp);

I We can also use character-based functions such as:
include <stdio .h>
int fgetc(FILE * stream);
int fputc(int c, FILE * stream);

I With either approach, we can write a C program that will work on any operating
system as it is in standard C.

Files and
Processes
(review)

4/61

Standard C File Copy

I Uses fread and fwrite.
I files-processes/stdc-mycp.c

https://github.com/BoiseState/CS453-resources/blob/master/examples/files-processes/stdc-mycp.c

Files and
Processes
(review)

5/61

POSIX/Unix Files

I "On a UNIX system, everything is a file; if something is
not a file, it is a process."

I A directory is just a file containing names of other files.
I Programs, services, texts, images, and so forth, are all files.
I Input and output devices, and generally all devices, are

considered to be files.

Files and
Processes
(review)

6/61

File Types

I Regular files: text files, executables, input for or output
from a program, etc.

I Directories: files that are lists of other files.
I Special files: the mechanism used for input and output.

Most special files are in /dev.
I Character device: allow users and programs to

communicate with hardware peripheral devices.
I Block device: similar to character devices. Mostly govern

hardware such as hard drives, memory, etc.
I Links: a system to make a file or directory visible in

multiple parts of the system’s file tree.
I (Domain) sockets: a special file type, similar to TCP/IP

sockets, provides inter-process networking protected by the
file system’s access control.

I Named pipes: like sockets, provide a way for local
processes to communicate with each other.

Files and
Processes
(review)

7/61

File Types (2)

I Can use ls -l to determine the file type. The first
character displays the type.

Symbol Meaning
- Regular file
d Directory
l Link
c Character device
s Socket
p Named pipe
b Block device

Files and
Processes
(review)

8/61

POSIX/Unix File Interface

I The system call interface for files in POSIX systems like
Linux and MacOSX.

I A file is a named, ordered stream of bytes.
I open(..) Open a file for reading or writing. Also allows a

file to be locked providing exclusive access.
I close(..)
I read(..) The read operation is normally blocking.
I write(..)
I lseek(..) Seek to an arbitrary location in a file.
I ioctl(..) Send an arbitrary control request (specific to a

device). e.g. rewinding a tape drive, resizing a window etc.
I See man 2 <function-name> for documentation.

I Let’s rewrite the file copy program using the POSIX
system call interface.

Files and
Processes
(review)

9/61

POSIX System File Copy

I Uses read and write.
I files-processes/mycp.c

https://github.com/BoiseState/CS453-resources/blob/master/examples/files-processes/mycp.c

Files and
Processes
(review)

10/61

Buffering

Files and
Processes
(review)

11/61

Effect of buffer size on I/O speed

I Buffering helps adjust the data rate between two entities
to avoid overflow.

I Buffering can also improve performance of systems by
allowing I/O to happen ahead of time or to have I/O
happen in parallel with computing.

I Buffering is a widely used concept in Computer Science.
I Observe the effect of buffer size on the speed of the

copying. Experiment using the file copy program with
different buffer sizes on a large file and time the copy.

I Script for testing effects of buffering:
files-processes/test-mycp.sh

https://github.com/BoiseState/CS453-resources/blob/master/examples/files-processes/test-mycp.sh

Files and
Processes
(review)

12/61

Effect of Buffering on File I/O (System Calls)

The following times are for the file copy program with varying buffer sizes.
All times are in seconds. Total speedup due to buffering is 1455!
buffer size elapsed user system

1 36.387 1.565 34.398
2 17.783 0.757 16.974
4 9.817 0.400 9.393
8 4.603 0.180 4.375

16 2.289 0.093 2.190
32 1.142 0.047 1.091
64 0.581 0.017 0.562
128 0.299 0.012 0.286
256 0.158 0.007 0.150
512 0.090 0.003 0.084

1024 0.054 0.001 0.051
2048 0.035 0.001 0.032
4096 0.025 0.000 0.024

Do we get a similar improvement with the standard C program? Why or
why not?

Files and
Processes
(review)

13/61

Effect of Buffering on File I/O (Standard C)

The following times are for the file copy program with varying buffer sizes.
All times are in seconds. Total speedup is around 40.
buffer size elapsed user system

1 0.965 0.945 0.018
2 0.502 0.475 0.026
4 0.267 0.244 0.021
8 0.156 0.136 0.019

16 0.082 0.053 0.028
32 0.056 0.032 0.023
64 0.042 0.014 0.027
128 0.034 0.012 0.021
256 0.033 0.010 0.022
512 0.029 0.008 0.021

1024 0.029 0.006 0.022
2048 0.028 0.004 0.023
4096 0.024 0.001 0.022

Why does the standard C program behave differently?

Files and
Processes
(review)

14/61

Examples of Buffering from “Real-Life"

I Ice cube trays. You have one tray that you get ice cubes from
and another full tray that is not used. When the first tray is
empty, you refill that tray and let it freeze while you get ice cubes
from the other tray.

I Shock absorbers in car, truck or mountain bike.
I Ski lift is a circular buffer
I Two parents buffer a child’s demand for attention.
I Multiple elevators in a hotel lobby. An escalator might be

considered a circular buffer.
I Traffic lights at an intersection buffer the flow of traffic through

the limited resource that is an intersection. A round-about is a
circular-buffer solution to the same problem.

Files and
Processes
(review)

15/61

Buffering

I Buffering improves I/O performance by allowing device
managers to keep slower I/O devices busy when process do
not need I/O.

I Single buffering.
I Double buffering.
I Circular buffering.

Files and
Processes
(review)

16/61

Double Buffering

I Double buffering is used in software and hardware.

Files and
Processes
(review)

17/61

Circular Buffering

I Similar to maintaining a variable-sized queue in a fixed
size circular array.

I See example of queue implemented as a circular array in
device-management/ArrayQueue.c

Files and
Processes
(review)

18/61

Presenting Experimental Results

I Always give details of the CPU on the machine along with
the clock speed, cache size, amount of main memory and
swap size and disk speed (seek time, latency, buffer size)
(if swapping is an issue).

I Remember that you will get a better time by running the
application several times because of caching.

I Always mention what compiler was used (including the
version), what compiler flags were set (whether you used
the optimization flag or not), and under what operating
system was the experiment carried out.

I Remember that elapsed time depends on how many
processes are using the CPU at the time the timing was
done. The user time (a.k.a. CPU time) and the system
time are pretty much independent of the number of
processes active on the system.

Files and
Processes
(review)

19/61

MS Windows File Interface

A file is a named, ordered stream of bytes.
I OpenFile() or CreateFile(..) Open or create a file

for reading or writing. Returns a HANDLE (reference) to a
file structure used to identify the file for other system calls.

I CloseHandle(..)
I ReadFile(..) The read operation is normally blocking.
I WriteFile(..)
I SetFilePointer(..) Seek to an arbitrary location in a

file.

Files and
Processes
(review)

20/61

Processes

Components of a process:
I the executable code (also known as program text or text

segment)
I the data on which the program will execute
I status of the process
I resources required by the process: e.g. files, shared

libraries etc.
The data associated with a process is divided into several
segments:

I Global and static variables: data segment
I Dynamically allocated variables: heap segment
I Local variables, function/method arguments and return

values: stack segment

Files and
Processes
(review)

21/61

The Linux/UNIX Process model

0xFFFFFFFF

0x00000000

Program Binary

Global/Static variables

Dynamically allocated variables

Local variables, function/method arguments
Stack

Heap

Text

Data

Files and
Processes
(review)

22/61

Memory Quiz (part 1)

Where is Neo? Where is Morpheus? Somewhere in the Matrix. Based on the
following code, determine in which segment are the specified variables (on the next
slide) allocated.

#define BODY_BIT_SIZE 1000000
int A[BODY_BIT_SIZE];
extern void transfer();

void booth(char *xyz)
{

int i;
static int neo[BODY_BIT_SIZE];
int *morpheus = (int *) malloc(sizeof(int) * BODY_BIT_SIZE);
for (i = 0; i < BODY_BIT_SIZE; i++)

morpheus[i] = neo[i];
morpheus[0] = xyz;
transfer();

}
int main(int argc, char *argv[])
{

char *xyz = (char *) malloc(sizeof(char) * BODY_BIT_SIZE);
printf("Hello?\n"); scanf("%s", xyz)
booth(xyz);

}

Files and
Processes
(review)

23/61

Memory Quiz (part 2)

1. A[100] Data Heap Stack
2. i Data Heap Stack
3. morpheus Data Heap Stack
4. morpheus[0] Data Heap Stack
5. neo[10] Data Heap Stack
6. argc Data Heap Stack
7. xyz (in booth(...)) Data Heap Stack

Files and
Processes
(review)

24/61

Creation of Processes

I To the user, the system is a collection of processes. Some
of them are part of the operating system, some perform
other supporting services and some are application
processes.

I Why not just have a single program that does everything?
I How is a process created?
I How is the operating system created at bootup? Let’s

examine the bootup of Linux and Microsoft Windows.

Files and
Processes
(review)

25/61

Initializing the Operating System

“Booting” the computer.

Main Entry: bootstrap
Function: noun
Date: 1913
1 plural: unaided efforts -- often used in the phrase

by one's own bootstraps
2 : a looped strap sewed at the side or the rear top

of a boot to help in pulling it on.

Files and
Processes
(review)

26/61

The Linux Bootup Process

bootstrap kernelgrub systemd

shelllogin

getty

getty

getty

kdm X

 kdeinit kdeinit bash

ooffice

 ssh

amarok

firefox

vmplayer

systemd has replaced init process that was used traditionally in Linux/Unix systems

Try the pstree command!

Files and
Processes
(review)

27/61

Microsoft Windows Bootup Process

Control

Native Applications

Service

Local

Logon

Ntdetect

Hal.dll

Ntbootdd.sys

Dialog

Subsystem
Security

Manager

WinlogonSmss
bootstrap

ntoskrnl.exe
BootMgr

Smss: Session Manager SubSystem

Files and
Processes
(review)

28/61

Executing Computations

I The Unix model (followed by most operating systems) is
to create a new process every time to execute a new
computation. The system at any time looks like a tree of
processes, with one process being the ancestor of all other
processes.

I What’s the advantage of creating a process each time we
start a new computation?

Files and
Processes
(review)

29/61

The fork() system call

include <sys/types.h>
include <unistd .h>

pid_t fork(void);

I The fork() system call creates a child process that is a
clone of the parent. The stack, data and heap segments
are the same at the moment of creation. The program
text is also logically copied (but may be physically shared).

I The child process differs from the parent process only in
its process id and its parent process id and in the fact that
resource utilization is set to zero.

I One easy way to communicate between a parent and a
child is for the parent to initialize variables and data
structures before calling fork() and the child process will
inherit the values.

I The fork() is called once but it returns twice! (one in
the parent process and once in the child process)

Files and
Processes
(review)

30/61

Poetry and Aphorisms

Two roads diverged in a wood, and I–
I took the one less traveled by,
and I got lost!

When you come to a fork in the road, take it!
–Yogi Berra

Files and
Processes
(review)

31/61

Forked Processes?

Files and
Processes
(review)

31/61

Forked Processes?

Files and
Processes
(review)

31/61

Forked Processes?

Files and
Processes
(review)

32/61

The fork system call

I Example: files-processes/fork-hello-world.c

https://github.com/BoiseState/CS453-resources/blob/master/examples/files-processes/test-mycp.sh

Files and
Processes
(review)

33/61

wait and waitpid system calls

I Used to wait for a state change in a child process.
include <sys/types.h>
include <sys/wait.h>

pid_t wait(int * status);
pid_t waitpid (pid_t pid , int *status , int options);

I The waitpid() system call suspends the calling process until one of its child
terminates or changes states. Using -1 for pid in waitpid() means to wait
for any of the child processes. Otherwise, pid > 0 provides the specific
process id to wait for.

I It is possible to do a non-blocking wait using the WNOHANG option, as shown
below where the call will return immediately if no child is done or changed
state:

waitpid (-1, &status , WNOHANG);

I The wait() system call suspends execution of the calling process until one
of its children terminates. The call wait(&status) is equivalent to:

waitpid (-1, &status , 0);

I Check the man page on how to check the status variable to get more
information about the child process whose pid was returned by waitpid()

or wait() call.

Files and
Processes
(review)

34/61

I Example: files-processes/fork-and-wait.c
I Example: files-processes/fork-child-grandchild.c

https://github.com/BoiseState/CS453-resources/blob/master/examples/files-processes/test-mycp.sh
https://github.com/BoiseState/CS453-resources/blob/master/examples/files-processes/fork-and-wait.c

Files and
Processes
(review)

35/61

Process Hierarchy

I We can draw a process family tree to make it easier to
understand the flow of control.

I For example, see below for the process tree for the last
two examples:

fork−child−grandchildfork−hello−world

parent

parent child1

parent child2

parent

parent

grandchild

child

child

Files and
Processes
(review)

36/61

In-Class Exercises (1)

I Fork Exercise 1. How many new processes are created by the
following code?
fork ();
fork ();

I Fork Exercise 2. How many new processes are created by the
following code?
fork ();
fork ();
fork ();

I Fork Exercise 3. How many new processes are created by the
following code?
int i;
for (i = 0; i < n; i++)

fork ();

Files and
Processes
(review)

37/61

In-Class Exercises (2)

I The Forked Ancestry. Examine the following C program fragment.
How many new processes are created by the following code?
/* process A */
/* ... */

if (fork () == 0) {
if (fork () == 0) {

if (fork () == 0) {
if (fork () == 0) {

/* do something */
}

}
}

}
/* ... */

1. 5 new processes
2. 4 new processes
3. 16 new processes
4. 15 new processes
5. 8 new processes

Files and
Processes
(review)

38/61

Pedal to the metal: fork test

I Try to generate a lot of processes
I Example: files-processes/fork-test.c

https://github.com/BoiseState/CS453-resources/blob/master/examples/files-processes/fork-test.c

Files and
Processes
(review)

39/61

The exec() system call

include <unistd .h>
int execve (const char *filename , char * const argv [],

char * const envp []);

I The execve() executes the program pointed to by the filename

parameter. It does not return on success, and the text, data and stack
segments of the calling process are overwritten by that of the program
loaded. The program invoked inherits the calling process’s process id.
See the man page for more details.

I The execve() function is called once but it never returns on success!
The only reason to return is that it failed to execute the new program.

I The following variations are front-ends in the C library. In the first
two variations, we only have to specify the name of the executable
(without any ’/’) and the function searches for its location in the
same way as the shell using the PATH environment variable. The last
three variations specify the full path to the executable.

int execlp (const char *file , const char *arg , ...);
int execvp (const char *file , char * const argv []);
int execl(const char *path , const char *arg , ...);
int execle (const char *path , const char *arg , ...,

char * const envp []);
int execv(const char *path , char *const argv []);

Files and
Processes
(review)

40/61

How does the shell find an executable?

I When we type the name of a program and hit enter in the shell, it
searches for that executable in a list of directories specified
usually by the PATH environment variable

I We can check the value of the PATH variable with the echo
command:

[user@onyx ~]$ echo $PATH
/bin :/ usr/ lib64/ ccache :/ usr/local /bin :/ usr/bin:
/home/ students /user/bin :.:

We get a colon separated list of directories. The search is done in
order from the first to the last directory in the list and chooses
the first instance of the executable it finds

I We can ask the shell which executable it will use with the which
command. For example:

[user@onyx ~]$ which gcc
/bin/gcc

I A program can find the value of the PATH variable with the
system call getenv("PATH")

Files and
Processes
(review)

41/61

Example of exec’ing a process

I Example: files-processes/fork-and-exec.c
I The exce’ed program: files-processes/print-pid.c

https://github.com/BoiseState/CS453-resources/blob/master/examples/files-processes/fork-and-exec.c
https://github.com/BoiseState/CS453-resources/blob/master/examples/files-processes/print-pid.c

Files and
Processes
(review)

42/61

A simple shell

I Example: files-processes/simple-shell.c
I Need error.c and ourhdr.h to compile.

https://github.com/BoiseState/CS453-resources/blob/master/examples/files-processes/simple-shell.c
https://github.com/BoiseState/CS453-resources/blob/master/examples/error.c
https://github.com/BoiseState/CS453-resources/blob/master/examples/ourhdr.h

Files and
Processes
(review)

43/61

In-Class Exercises (3)

I Drones and Drones. Read the code below and choose the
statement below that correctly describes what the code is doing.
int main(int argc , char ** argv)
{

pid_t pids [4], pid;
int i, status ;
for (i=0; i <4; i++) {

if ((pid = fork ()) == 0) {
execlp ("xlogo", "xlogo ", (char *) 0);

} else if (pid > 0) {
pids[i] = pid;

} else {
/* print appropriate error message */

}
}
waitpid (-1, &status , 0);
exit (0);

}

1. Starts four copies of the program xlogo and waits for all them to
finish

2. Starts four copies of the program xlogo and waits for any one of
them to finish

3. Starts four copies of the program xlogo and waits for three of them
to finish

4. Starts four copies of the program xlogo and waits forever
5. Gangnam-style xlogo dance!

Files and
Processes
(review)

44/61

Signals: asynchronous events

Linux/Unix signals are a type of event. Signals are
asynchronous in nature and are used to inform processes of
certain events happening.
Examples:

I User pressing the interrupt key (usually Ctl-c or Delete
key). Generates the SIGINT signal.

I User pressing the stop key (usually Ctl-z). Generates the
SIGTSTP signal, which stops (suspends) the process.

I The signal SIGCONT can restart a process if it is stopped.
I Signals are available for alarm (SIGALRM), for hardware

exceptions, for when child processes terminate or stop and
many other events.

I Special signals for killing (SIGKILL) or stopping
(SIGSTOP) a process. These cannot be ignored by a
process.

Files and
Processes
(review)

45/61

POSIX signals list

Read man signal and man 7 signal for more information.

SIGHUP Hangup detected on controlling terminal
or death of controlling process

SIGINT Interrupt from keyboard
SIGQUIT Quit from keyboard
SIGILL Illegal Instruction
SIGABRT Abort signal from abort
SIGFPE Floating point exception
SIGKILL Kill signal (cannot be ignored)
SIGSEGV Invalid memory reference
SIGPIPE Broken pipe: write to pipe with no readers
SIGALRM Timer signal from alarm
SIGTERM Termination signal
SIGUSR1 User-defined signal 1
SIGUSR2 User-defined signal 2
SIGCHLD Child stopped or terminated
SIGCONT Continue if stopped
SIGSTOP Stop process (cannot be ignored)
SIGTSTP Stop signal from keyboard
SIGTTIN tty input for background process
SIGTTOU tty output for background process

Files and
Processes
(review)

46/61

Signals (contd.)

I For each signal there are three possible actions: default, ignore, or
catch. The system call signal() attempts to set what happens
when a signal is received. The prototype for the system call is:
void (* signal (int signum , void (* handler)(int)))(int);

I The above prototype can be made easier to read with a typedef
as shown below.

typedef void sighandler_t (int);
sighandler_t * signal (int , sighandler_t *);

I The header file <signal.h> defines two special dummy functions
SIG_DFL and SIG_IGN for use as signal catching actions. For
example:
signal (SIGALRM , SIG_IGN);

Files and
Processes
(review)

47/61

To kill or to really kill?

I The system call kill() is used to send a specified signal to a specified
process. Given a process with id pid, and assuming that it is a child
process or that it is owned by the user, here are some examples:

kill(pid , SIGTERM); // terminate process pid
kill(pid , SIGSTOP); // suspend process pid
kill(pid , SIGCONT); // restart process pid

I Special signals for killing (SIGKILL) or stopping (SIGSTOP) a process.
These cannot be ignored by a process. The SIGTERM signal can be
ignored or caught, so to really kill use SIGKILL!

I Linux has a command named kill that invokes the kill() system call.
kill -s signal pid
kill -l --> list all signals
kill -9 --> send SIGKILL

I In-Class Exercises (4). What do the following statements do?
kill(getpid (), SIGKILL);
kill(getpid (), SIGSTOP);

Files and
Processes
(review)

48/61

To kill gently....

I To kill a process use kill -1 (SIGHUP) or kill -15
(SIGTERM) first to give the process a chance to clean up before
being killed (as those signals can be caught). If that doesn’t
work, then use kill -9 to send SIGKILL signal that cannot be
caught or ignored. In some circumstances, however, even
SIGKILL doesn’t work....

Because I could not stop for Death,
He kindly stopped for me;
The carriage held but just ourselves
And Immortality.
...
Emily Dickinson

I Examples:
I A simple signal handler example. Ignores CTRL+c and CTRL+z (and

prints an annoying message): files-processes/sig-handler.c
I A bigger example of systems programming. Sets a time limit on a

process: files-processes/timeout.c

https://github.com/BoiseState/CS453-resources/blob/master/examples/files-processes/sig-handler.c
https://github.com/BoiseState/CS453-resources/blob/master/examples/files-processes/timeout.c

Files and
Processes
(review)

49/61

In-Class Exercises (5)

I Autosave? Consider the following C program sketch. Choose the
right answer that explains what the code does.
int main () {

/* ... */
signal (SIGALRM , savestate);
alarm (10);
/* ... */
for (;;) {

/* do something */
}

}
void savestate (int signo) {

/* save the state to disk */
}

1. Saves the state of the program to disk every 10 seconds
2. Exits after saving the state of the program once to the disk after

10 seconds
3. Keeps running after saving the state of the program once to the

disk after 10 seconds
4. Exits after saving the state of the program twice to the disk after

10 seconds
5. Never saves the state of the program to the disk

Files and
Processes
(review)

50/61

System Calls Introduced

I exit()
I open(), creat(), close(), read(), write()
I fork()
I wait(), waitpid()
I execvp(), execlp()
I alarm()
I signal()
I getpid(), getppid()
I sleep(), kill()

Files and
Processes
(review)

51/61

MS Windows API for Processes

I In MS Windows, the system call interface is not documented.
Instead the MS Windows API is documented, which helps with
portability across multiple versions of the MS Windows operating
systems.

I Using the MS Windows API requires us to include #include
<windows.h> header file.

I Creating a process gives a handle that is used to refer to the
actual object that represents a process (or a thread). Most
system calls use handles.

I CloseHandle(...). Frees the space used by the handle.
I Get detailed information from

http://msdn.microsoft.com/library/

http://msdn.microsoft.com/library/

Files and
Processes
(review)

52/61

Calls in Linux versus Windows API

Linux Windows API

fork(), exec() CreateProcess() (fork and exec combined)
exit() ExitProcess()
wait(), waitpid() WaitForSingleObject(), WaitForMultipleObjects()
WEXITSTATUS() macro GetExitCodeProcess()
getpid() GetCurrentProcessId()
— GetCurrentProcess() (returns process handle)
getppid() No easy way to get parent process id!
sleep() Sleep() (warning: this takes time in milliseconds!)
kill() TerminateProcess()
alarm() CreateTimerQueueTimer()
signal() signal()

Files and
Processes
(review)

53/61

CreateProcess Call in MS Windows API

BOOL WINAPI CreateProcess (
LPCTSTR lpApplicationName ,
LPTSTR lpCommandLine ,
LPSECURITY_ATTRIBUTES lpProcessAttributes ,
LPSECURITY_ATTRIBUTES lpThreadAttributes ,
BOOL bInheritHandles ,
DWORD dwCreationFlags ,
LPVOID lpEnvironment ,
LPCTSTR lpCurrentDirectory ,
LPSTARTUPINFO lpStartupInfo ,
LPPROCESS_INFORMATION lpProcessInformation

);

Files and
Processes
(review)

54/61

Processes Related Calls in MS Windows API

WaitForSingleObject (hProcess , INFINITE);

CloseHandle (pi. hProcess);

DWORD WINAPI GetCurrentProcessId (void);
HANDLE WINAPI GetCurrentProcess (void);

VOID WINAPI ExitProcess (
UINT uExitCode

);

BOOL WINAPI TerminateProcess (
HANDLE hProcess ,
UINT uExitCode

);

BOOL WINAPI GetExitCodeProcess (
HANDLE hProcess ,
LPDWORD lpExitCode

);

Files and
Processes
(review)

55/61

Structures Related to Processes

typedef struct _PROCESS_INFORMATION {
HANDLE hProcess ;
HANDLE hThread ;
DWORD dwProcessId ;
DWORD dwThreadId ;

} PROCESS_INFORMATION , * LPPROCESS_INFORMATION ;

typedef struct _SECURITY_ATTRIBUTES {
DWORD nLength ;
LPVOID lpSecurityDescriptor ;
BOOL bInheritHandle ;

} SECURITY_ATTRIBUTES , * LPSECURITY_ATTRIBUTES ;

Files and
Processes
(review)

56/61

Checking Errors in System Calls

I DWORD GetLastErrorCode(void). Retrieves the calling
thread’s last-error code value. The last-error code is
maintained on a per-thread basis. Multiple threads do not
overwrite each other’s last-error code. This function
should be called right after a system call returns an error
(usually we know that from a negative return value from
the system call).

I To obtain an error string for system error codes, use the
FormatMessage function.
DWORD FormatMessage (

DWORD dwFlags ,
LPCVOID lpSource ,
DWORD dwMessageId ,
DWORD dwLanguageId ,
LPTSTR lpBuffer ,
DWORD nSize ,
va_list * Arguments

);

Files and
Processes
(review)

57/61

Sample Error Code

void ErrSys(char *szMsg)
{

LPVOID lpMsgBuf;

// Try to format the error message from the last failed call
// (returns # of TCHARS in message -- 0 if failed)
if (FormatMessage(

FORMAT_MESSAGE_ALLOCATE_BUFFER | // source and processing options
FORMAT_MESSAGE_FROM_SYSTEM |
FORMAT_MESSAGE_IGNORE_INSERTS,
NULL, // message source
GetLastError(), // message identifier
MAKELANGID(LANG_NEUTRAL, SUBLANG_DEFAULT), // language (Default)
(LPTSTR) &lpMsgBuf, // message buffer
0, // maximum size of message buffer

// (ignored with FORMAT_MESSAGE_ALLOCATE_BUFFER set)
NULL // array of message inserts

))
{

// Display the formatted string with the user supplied string at front.
fprintf(stderr, "%s: %s\n", szMsg, (LPSTR)lpMsgBuf);
LocalFree(lpMsgBuf); // Free the buffer.

} else {
fprintf(stderr, "%s: Could not get the error message!\n", szMsg);

}
fflush(NULL); /* flush all output streams */
ExitProcess(1); /* exit abnormally */

}

Files and
Processes
(review)

58/61

Using MS Visual Studio (1)

I Visual Studio is available via the Dream Spark program from the
college.

I Start up Visual Studio. Choose New Project → Visual C++ →
Win32 → Win32 Console Project.

I In the Wizard window, choose Application Settings → Empty
Project → Finish.

I Right click on the project in the right pane (Solution Explorer)
and then choose Add → Add Existing Item.... Note that this
doesn’t copy the file into the Visual Studio project folder.

I To copy the file, right click on the project name in the Solution
Explorer and choose the Open Folder in File Explorer . Then copy
files into the project folder under the solution folder. Back in
Visual Studio, select Project → Show All Files. Then go to the
Solution Explorer pane, right click on the file(s) you have added
and choose Include File in Project option.

Files and
Processes
(review)

59/61

Using MS Visual Studio (2)

I Also note that, Visual Studio uses Unicode by default. For now,
we will simply turn this off. Press ALT+F7 to open the project
properties, and navigate to Configuration Properties → General .
Switch Character Set to Multi-Byte Character Setting from the
drop-down menu. The examples provided will not work unless you
choose the multi-byte setting!

I If you have several small programs in one folder, we can create a
single solution with multiple projects in it to keep it more
organized. After creating an empty solution, simply add new
projects to it by right-clicking on the solution name in the
Solution Explorer pane.

I Note that with multiple projects in one solution, we have to
choose which one is the startup project. Right-click on the
project name in the Solution Explorer and choose the option Set
as Startup Project.

I Tip. If you want to know definition of MS Windows API
typedefs, right-click on the type (e.g. LPVOID) and select “go to
definition” from the drop down menu.

I Tip. Ctrl-Space does code completion (just like in Eclipse)

Files and
Processes
(review)

60/61

MS Windows API Examples

I lab/ms-windows/files-processes/fork-and-wait.c
I lab/ms-windows/files-processes/fork-and-exec.c
I

lab/ms-windows/files-processes/fork-hello-world.c
I lab/ms-windows/files-processes/fork-test.c
I lab/ms-windows/files-processes/shell1.c
I lab/ms-windows/files-processes/alarm-test.c
I lab/ms-windows/files-processes/timeout.c
I and others in the ms-windows/files-processes examples

folder....

Files and
Processes
(review)

61/61

Microsoft PowerShell

Powershell is a shell, for Microsoft platforms, with a command-line
and a built-in scripting language.

I Aliases are built-in for common commands used in bash with
Unix/Linux/Mac OSX systems. For example, TAB is used for
command completion and aliases exist for ls, cp, man, date etc.

I Pipes are also supported but they pass objects instead of
unstructured text streams.

I Includes a dynamically typed scripting language with .NET
integration. Here is a simple example of a loop:
while ($true) {.\fork-hello-world; echo ""}

I The following shows how to time a command or script in
powershell:
Measure-Command {sleep 2}

I Powershell script files are text files with a .ps1 extension. By
default, you cannot run scripts unless they are signed. To enable
it, use the following command:
Set-ExecutionPolicy RemoteSigned
Use the command Get-Help About_Signing to learn more about
signing.

