
File
Management

1/34

File Management

File
Management

2/34

Learning Objectives

I Filesystem organization and recursive traversal
I File buffering and memory mapping for performance
I Low-level data structures for implementing filesystems
I Disk space management for sample file systems

File
Management

3/34

Files

I Files can be viewed as either:
I a sequence of bytes with no structure imposed by the

operating system.
I or a structured collection of information with some

structure imposed by the operating system.
I Unix, Linux, Windows, Mac OS X all treat files as a

sequence of bytes. This model is the most flexible, leaving
the structure of the file up to the application programs.

File
Management

4/34

File Types in Linux

I Regular files which include text files and binary files.
I Text files (formatted).
I Binary files (unformatted). E.g. executable files, archive

files, shared libraries etc.
I Directory files.
I Device special files (representing block and character

devices).
I Links (hard and symbolic links or shortcuts).
I FIFO (named pipes), sockets.

The file command in Linux/MacOSX identifies the type of a
file.

File
Management

5/34

File Attributes and Operations

I Examples of typical attributes: owner, creator, creation
time, time of last access, time last modified, current size,
read-only flag, archive flag, hidden flag, lock flags,
temporary flags, reference count.

I Examples of typical operations: create, delete, open, close,
read, write, append, seek, get attributes, set attributes,
rename etc.

I See example: file-management/mystat.c for how to obtain
file attributes via the system call stat().

File
Management

6/34

Directories

I Directories can be used to organize files into
I Tree Structures
I Directed Acyclic Graphs
I Arbitrary Graphs (though cycles would cause problems!)

I System calls dealing with directories: opendir(),
readdir(), closedir(), rewinddir() etc.

I Differences between hard links and symbolic links. See
example in the file-management folder in the examples.

I How do different utility programs and the system deal with
loops in the file system? try the following commands in
the file-management examples folder (where d1 is a
folder with a cyclic structure):
tar cvf d1.tar d1
zip -r d1.zip d1

File
Management

7/34

Structure of directory files in Linux

A directory file consists of several entries of the following type.
struct dirent
{

long d_ino ; /* inode number */
off_t d_off ; /* offset to next dirent */
unsigned short d_reclen ; /* length of this dirent */
char d_name [NAME_MAX +1]; /* file name (null - terminated) */

}

The inode is the index node for a file/directory that allows the system
to find the file on the disk drive.

Example: a bare-bones implementation of ls command:
file-management/myls.c

https://github.com/BoiseState/CS453-resources/blob/master/examples/file-management/myls.c

File
Management

8/34

Recursive File Traversal

I Recursive traversal in the directory hierarchy is useful for
many system utilities. Here are some examples:
du
find / -name "core" -exec /bin/rm -f '{}' ';'
tar cf /tmp/home.tar ~
tar cf - old | (cd /tmp; tar xf -)
cp -r old /tmp
ls -R
chmod -R g-r,o-r ~/ cs453

I Example of a file system traversal code:
file-management/filetype-survey.c

https://github.com/BoiseState/CS453-resources/blob/master/examples/file-management/filetype-survey.c

File
Management

9/34

Experiments with Recursive File Traversal

I Run the program file-management/filetype-survey.c on
your home folder or (as root, on your entire system!).

I Run the program file-management/filesize-survey.c on your
home folder or on your entire system.

I See results for onyx in the file filesize-survey.txt. Note that
we found that 85% of the files were 12 blocks or smaller!

https://github.com/BoiseState/CS453-resources/blob/master/examples/file-management/filetype-survey.c
https://github.com/BoiseState/CS453-resources/blob/master/examples/file-management/filesize-survey.c
https://github.com/BoiseState/CS453-resources/blob/master/examples/file-management/filesize-survey.txt

File
Management

10/34

File I/O Buffering

I unbuffered. (I/O occurs as each character is encountered).
I line-buffered. (I/O occurs when a newline is encountered).
I fully-buffered. (I/O occurs when the buffer fills up.)

I The streams stdin, stdout are usually line-buffered (if
they refer to a terminal device), otherwise they are fully
buffered. Standard error (stderr) is unbuffered.

I Under Linux/MacOS X, the system call setvbuf(...) can
be used to change the buffering behavior of an I/O stream.

File
Management

11/34

Memory Mapped Files

A file can be mapped to a region in the virtual address space. The file
serves as a backing store for that region of memory. Read/writes
cause page faults and when the process terminates all mapped,
modified pages are written back to the file on the disk.
Some issues:

I what if the file is larger than the virtual address space?
I what if another process opens the file for a normal read?
I unmapping the mapped file does not cause the modified pages to

be written back immediately. The updating happens at periodic
intervals by the virtual memory subsystem or can be forced by the
system call msync().

I But memory mapped file is a convenient way to provide shared
memory between processes.

//.. appropriate header files
void *mmap(void *start , size_t length , int prot ,

int flags , int fd , off_t offset);

int munmap (void *start , size_t length);

File
Management

12/34

Comparison of file I/O vs. memory-mapped file I/O

I See examples: file-io.c and mmap-io.c

user system elapsed time
memory-mapped I/O 2.85s 0.01s 2.96s
file I/O 0.68s 14.39s 15.17s

I The two programs manipulate a file where several chunks
are read and written over repeatedly. The file I/O program
does the reads/writes directly on file whereas the
memory-mapped program maps the file to memory first
and then performs the reads/writes in memory.

I The file I/O was done with a buffer size of 4096 bytes.
I All times are in seconds.

https://github.com/BoiseState/CS453-resources/blob/master/examples/file-management/file-io.c
https://github.com/BoiseState/CS453-resources/blob/master/examples/file-management/mmap-io.c

File
Management

13/34

Low Level File Implementation

I open(), close() system calls.
I Descriptor Tables (one per process) and File Table

(global).
I How are file descriptors allocated? Implementing I/O

redirection.

File
Management

14/34

Kernel data structures for File I/O

I File descriptor table. Every process has an entry in the process
table. Within each process table entry is a table of open file
descriptors, with one entry per descriptor. A descriptor has

I file descriptor flags.
I pointer to a File Table entry.

I File Table. The kernel maintains a file table for all open files.
Each file table entry may contain:

I file status flags (read, write, append, etc.)
I current file offset.
I a pointer to the v-node (virtual-node) table entry for the file.
I Note that child processes process table entries point to the same

node in the file table for the same open file (if file was opened
before fork)!

I Unrelated processes will point to separate entries in the file table if
they open the same file.

II V-node. The v-node contains information about the type of file
and pointers to functions that operate on the file. For most files,
the v-node also contains the i-node (index-node) for the file.

I I-node. The i-node contains information about file attributes and
how to find the file on the disk.

File
Management

15/34

Disk Space Management

File
Management

16/34

Keeping Track of Allocated Blocks

I Contiguous allocation.
I Linked list allocation (Example: Microsoft FAT file

systems).
I Indexed Allocation (Example: Linux Ext2/Ext3/Ext4, Unix

System V filesystem etc.)
Note that we can examine the Linux kernel code in the fs folder to
see how it reads/writes various file systems.
We can also figure out the filesystem layouts by looking at
appropriate header files. For example, check out
include/linux/ext2_fs.h in the kernel source for Linux ext2/3/4
file system layouts.

File
Management

17/34

Linux Ext2/3/4 File Layout

Data

Data

Data

Data

Data

Data

Data

Data

Index

Index

Index

Index

Index

Index

Index

Index

Index

mode

owner

. . .

direct block 0

direct block 1

direct block 2

.

.

.

direct block 11

single indirect

double indirect

triple indirect

inode (index node)

File
Management

18/34

Linux Indexed Allocation Example Calculation

Example: Filesystem block size = 1KB
inode has 12 direct pointers, 1 indirect, 1 double indirect, 1 triple indirect
pointer.
Each pointer is 32 bits or 4 bytes. So we can store 256 pointers in one
block.

The following shows maximum file sizes that can be represented using
indexed file allocation for the above example.

I Using only direct pointers: 12×1KB = 12KB
I Using direct and single indirect pointers: 256×1KB+12KB = 268KB
I Using direct, single and double indirect pointers:

256×256×1KB+256KB+12KB = 65536KB+268KB = 65804KB∼=
64MB

I Using direct, single, double, and triple indirect pointers:
256×256×256×1KB+65536KB+256KB+12KB =
16777216KB+65804KB = 16843020KB∼= 16GB

File
Management

19/34

Dealing with Unallocated Blocks

I Using block status bitmap. One bit per block to keep track
of whether the block is allocated/unallocated. Makes it
easy to get a quick snapshot of the blocks on the disk.

I File systems integrity check (fsck command under Linux).
The block status bitmap makes some kinds of integrity
check easier to accomplish.

File
Management

20/34

Example File System Implementations

I Microsoft FAT-12, FAT-16, FAT-32 filesystems.
I Microsoft Windows 98 filesystem.
I Linux Ext2/Ext3/Ext4 filesystem.
I Other Journaling filesystems.

File
Management

21/34

FAT File System

I The original FAT file system allows file names to be 8+3
characters long (all uppercase).

I Hierarchical directory structure with arbitrary depth.
However, root directory had a fixed maximum size.

I File system was a tree (that is, links like in Unix were not
permitted).

I Any user has access to all files.

File
Management

22/34

FAT File System (continued)

I Each directory entry is represented by 32 bytes.

�
�
�
�
�
�

�
�
�
�
�
�

���
���
���
���
���
���

���
���
���
���
���
���

��
��
��
��
��
��

��
��
��
��
��
��

�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������

�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������

2 2 4138

attributes

sizeFilename ext reserved

Directory Entry in FAT File System

10 2

time date first block
number

I The time field has 5 bits for seconds, 6 bits for minutes, 5
bits for hours. The date field has 5 bits for day, 4 bits for
month, and 7 bits for year (kept in years since 1980...so
we have a year 2107 problem here).

I FAT-12, FAT-16 and FAT-32 are the same file systems but
with different address size that are supported. Actually,
FAT-32 supports 28 bits disk address.

File
Management

23/34

An Example File Allocation Table

File blocks are kept track using a File Allocation Table (FAT)
in main memory. The first block number from the directory
entry is used as an index into the 64K entry FAT table that
represents all files via linked lists in the FAT table.

Physical

block

File A starts here

File B starts here

Unused block

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

10

11

7

3

2

12

14

-1

-1

File
Management

24/34

FAT File System (continued)

I FAT file system supported four partitions per disk.
I Disk block size can be some multiple of 512 bytes (also

known as cluster size).
222
Block size FAT-12 FAT-16 FAT-322

0.5 KB 2 MB222
1 KB 4 MB222
2 KB 8 MB 128 MB222
4 KB 16 MB 256 MB 1 TB222
8 KB 512 MB 2 TB222

16 KB 1024 MB 2 TB222
32 KB 2048 MB 2 TB2221

1
1
1
1
1
1
1
1
1
1

1
1
1
1
1
1
1
1
1
1
1

1
1
1
1
1
1
1
1
1
1
1

1
1
1
1
1
1
1
1
1
1
1

1
1
1
1
1
1
1
1
1
1
1

File
Management

25/34

FAT File System (continued)

I The FAT file system keeps track of free blocks by marking
the entries in the File Allocation Table with a special code.
To find a free block, the system searches the FAT until it
finds a free block.

I The FAT table occupies a significant amount of main
memory. With FAT-32, the File Allocation Table was no
longer limited to 64K entries because otherwise the file
block size had to be quite big. Now to represent a 2GB
partition with 4KB block size, there are 512K blocks that
require 2MB of memory to store the table.

File
Management

26/34

Windows 98 Filesystem

I Allow long file names.
I Remain forward/backward compatible with older versions of

Microsoft Windows operating system using FAT file systems.
I Directory entry structure.

I The directory entry is designed such that older versions of the
operating system can still read it. In order to do so, Windows 98
file system first converts long names into 8+3 names by
converting the first six characters to upper case and then
appending ∼ n at the end (where n is 1,2, . . . as needed to make
the names be unique).

I The long names are stored in long-name entries before the actual
directory entry. These are directory entries with their attributes
marked 0, so older systems would just ignore these entries.

File
Management

27/34

Windows 98 Filesystem (continued)

Structure of a long-name entry.

Representation of the file name "The quick brown fox jumps over the
lazy dog"

68 d o g A

A

A

A

A S

0
C
K
C
K
C
K
C
K

0

0

0

0

0

0

0

N
T

3 o v e t h

i

y

o

e

j

c

u

k b

l

m p

a

r

s

z

x

u

2 w ofn

1 T h e q

T H E Q U 1
Creation

time
Last
acc

Last
writeUpp Low Size

Bytes
I ~

File
Management

28/34

Windows 98 Filesystem (continued)

I Why is the checksum field needed in long entries? To
detect consistency problems introduced by older system
manipulating the file system using only the short name.

I The Low field being zero provides additional check.
I There is no limitation on the size of the File Allocation

Table. So the system maintains a window into the table,
rather than storing the entire table in memory.

I Disk Layout: boot sector, FAT tables (usually replicated at
least two times), root directory, other directories, data
blocks.

File
Management

29/34

Linux Ext2 Filesystem

Boot Block group 0

Super– Group

block descriptor

Block group 1

Block

bitmap

Data

blocks

I–node

bitmap I–nodes

Block group 2 Block group 3 Block group 4 ...

File
Management

30/34

Linux Ext2 Filesystem

I The disk is divided into groups of blocks. Each block group contains:

I Superblock. Each block group starts with a superblock, which
tells how many blocks and i-nodes there are, gives the block size
etc.

I Group descriptor. The group descriptor contains information
about the location of the bitmaps, number of free blocks and
i-nodes in the group and the number of directories in the group.

I Block and I-node Bitmaps. These two bitmaps keep track of
free blocks and free i-nodes. Each map is one block long. With a 1
KB block, this limits the number of blocks and i-nodes to 8192 in
each block group.

I I-nodes. Each i-node is 128 bytes long (which is double the size
for standard Unix i-nodes). There are 12 direct addresses and 3
indirect addresses. Each address is 4 bytes long.

I Data nodes.

I Directories are spread evenly over the disk.
I When a file grows, the new block is placed in the same group as the

rest of the file, preferably right after the previous last block. When a
new file is added to a directory, Ext2 tries to put it into same block
group as the directory.

File
Management

31/34

Linux Ext3 Journaling Filesystem

The goal of a journaling filesystem is to avoid running
time-consuming consistency checks on the whole filesystem by
looking instead in a special disk area that contains the most
recent disk write operations named journal.
Remounting a journaling filesystem after a system failure is a
matter of a few seconds.

I Ext3 file system is a journaling filesystem that is
compatible with the ext2 filesystem.

I An Ext3 filesystem that has been cleanly unmounted can
be remounted as an Ext2 filesystem.

I Creating a journal for an existing Ext2 filesystem and
remounting as an Ext3 filesystem is a simple, fast
operation.

File
Management

32/34

Linux Ext3 Journaling Filesystem (contd)

Ext3 filesystem allows administrator to decide whether to log
just metadata or to log data blocks as well (at a performance
penalty). It supports three modes:

I Journal: All filesystem data and metadata changes are
logged into the journal. Safest and the slowest mode.

I Ordered: Only changes to the filesystem metadata are
written to the journal. However, groups metadata and
data blocks are written to disk before the filesystem
metadata. This is the default mode.

I Writeback: Only changes to the filesystem metadata are
written to the journal. Fastest mode. Also used in other
journaling filesystems.

File
Management

33/34

Other Journaling Filesystems (contd)

I Ext4. Supports larger filesystems and large files compared
to ext2/ext3. Uses HTree (a type of BTree) by default for
directory indexing. Backwards compatible with ext2/ext3.

I Microsoft’s NTFS. Uses B+-Trees to improve performance
and disk space utlization. Also includes better access
control using Access Control Lists (ACL).

I ResierFS (Version 3 is widely used,and has faster
performance on large files, Version 4 claims to have the
fastest performance in general usage as well)

I IBM’s JFS. Good performance for small and large files.
I Apple’s HFS+. Uses a B-Tree for storing metadata.

File
Management

34/34

Experimenting with File Systems

I Using loopback devices in Linux, we can build different file
systems inside regular files. We can even mount them and
experiment them.

I First create a file (of, say, 100MB size) filled by zeroes.
dd if=/dev/zero of=pseudo-device.img bs=1024 count=1048576

I Then make a file system (of, say, type ext3) inside that file.
mkfs -v -t ext3 pseudo-device.img

I Then we can mount it over a directory using a loop back device
as follows. You have to be superuser for this step and the
directory /mnt/testfs must exist.
sudo mount -o loop pseudo-device.img /mnt/testfs

I When you are done with it, you can umount it as follows.
sudo umount /mnt/testfs

I If we create the image file with a large hole in it, then the space
usage can grow as needed. See the example
file-management/create-empty-file.c

